Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Microbiol Immunol ; 440: 87-109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-33861373

RESUMEN

Lassa fever (LF) is a lethal hemorrhagic disease primarily concentrated in the tropical savannah regions of Nigeria and the Mano River Union countries of Sierra Leone, Liberia, and Guinea. Endemic hotspots within these countries have had recurrent exposure to Lassa virus (LASV) via continual spillover from the host reservoir Mastomys natalensis. Increased trade and travel throughout the region have spread the virus to previously unexposed countries, including Ghana, Benin, Mali, and Côte d'Ivoire. In the absence of effective treatment or vaccines to LASV, preventative measures against Lassa fever rely heavily on reducing or eliminating rodent exposure, increasing the knowledge base surrounding the virus and disease in communities, and diminishing the stigmas faced by Lassa fever survivors.


Asunto(s)
Fiebre de Lassa , Animales , Fiebre de Lassa/epidemiología , Virus Lassa/genética , Murinae
2.
Curr Top Microbiol Immunol ; 440: 67-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-33564902

RESUMEN

Individuals living in endemic hotspots of Lassa fever have recurrent exposure to Lassa virus (LASV) via spillover from the primary host reservoir Mastomys natalensis. Despite M. natalensis being broadly distributed across sub-Saharan Africa, Lassa fever is only found in West Africa. In recent years, new LASV reservoirs have been identified. Erudition of rodent habitats, reproduction and fecundity, movement patterns, and spatial preferences are essential to institute preventative measures against Lassa fever. Evolutionary insights have also added to our knowledge of closely related mammarenavirus distribution amongst rodents throughout the continent.


Asunto(s)
Fiebre de Lassa , Animales , Virus Lassa/genética , Fiebre de Lassa/epidemiología , Reservorios de Enfermedades , Murinae
3.
Viruses ; 13(11)2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835131

RESUMEN

Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , SARS-CoV-2/inmunología , Distribución por Edad , Alphacoronavirus/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Betacoronavirus/inmunología , Donantes de Sangre , Proteínas de la Nucleocápside de Coronavirus/inmunología , Protección Cruzada , Reacciones Cruzadas , Epítopos , Femenino , Humanos , Masculino , Fosfoproteínas/inmunología , Sierra Leona , Estados Unidos , Pseudotipado Viral
4.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34508652

RESUMEN

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Asunto(s)
COVID-19/epidemiología , Epidemias , SARS-CoV-2/fisiología , COVID-19/transmisión , Bases de Datos como Asunto , Brotes de Enfermedades , Humanos , Louisiana/epidemiología , Filogenia , Factores de Riesgo , SARS-CoV-2/clasificación , Texas , Viaje , Estados Unidos/epidemiología
5.
medRxiv ; 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33564781

RESUMEN

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...