Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Methods Mol Biol ; 2754: 55-75, 2024.
Article En | MEDLINE | ID: mdl-38512660

Tau is a microtubule-associated protein that belongs to the Intrinsically Disordered Proteins (IDPs) family. IDPs or Intrinsically Disordered Regions (IDRs) play key roles in protein interaction networks and their dysfunctions are often related to severe diseases. Defined by their lack of stable secondary and tertiary structures in physiological conditions while being functional, these proteins use their inherent structural flexibility to adapt to and interact with various binding partners. Knowledges on the structural dynamics of IDPs and their different conformers are crucial to finely decipher fundamental biological processes controlled by mechanisms such as conformational adaptations or switches, induced fit, or conformational selection events. Different mechanisms of binding have been proposed: among them, the so-called folding-upon-binding in which the IDP adopts a certain conformation upon interacting with a partner protein, or the formation of a "fuzzy" complex in which the IDP partly keeps its dynamical character at the surface of its partner. The dynamical nature and physicochemical properties of unbound as well as bound IDPs make this class of proteins particularly difficult to characterize by classical bio-structural techniques and require specific approaches for the fine description of their inherent dynamics.Among other techniques, Site-Directed Spin Labeling combined with Electron Paramagnetic Resonance (SDSL-EPR) spectroscopy has gained much interest in this last decade for the study of IDPs. SDSL-EPR consists in grafting a paramagnetic label (mainly a nitroxide radical) at selected site(s) of the macromolecule under interest followed by its observation using and/or combining different EPR strategies. These nitroxide spin labels detected by continuous wave (cw) EPR spectroscopy are used as perfect reporters or "spy spins" of their local environment, being able to reveal structural transitions, folding/unfolding events, etc. Another approach is based on the measurement of inter-label distance distributions in the 1.5-8.0 nm range using pulsed dipolar EPR experiments, such as Double Electron-Electron Resonance (DEER) spectroscopy. The technique is then particularly well suited to study the behavior of Tau in its interaction with its physiological partner: microtubules (MTs). In this chapter we provide a detailed experimental protocol for the labeling of Tau protein and its EPR study while interacting with preformed (Paclitaxel-stabilized) MTs, or using Tau as MT inducer. We show how the choice of nitroxide label can be crucial to obtain functional information on Tau/tubulin complexes.


Intrinsically Disordered Proteins , Nitrogen Oxides , tau Proteins , Electron Spin Resonance Spectroscopy/methods , Spin Labels , Microtubules
2.
Biophys Chem ; 305: 107155, 2024 02.
Article En | MEDLINE | ID: mdl-38100856

Intrinsically disordered proteins (IDPs) are known to adopt many rapidly interconverting structures, making it difficult to pinpoint the specific conformational states that are relevant for their function. Tau is an important IDP, and its conformation is known to be affected by post-translational modifications (PTMs), such as phosphorylation. To investigate the effect of specific phosphorylation on full-length Tau's dynamic global conformation, we employed a combination of nuclear magnetic resonance-based paramagnetic relaxation interference methods and electron paramagnetic resonance spectroscopy. By reproducing the AT8 epitope, comprising exclusive phosphorylation at residues S202 and T205, we were able to identify conformations specific to phosphorylated Tau, which exhibited a tendency towards less compact states. These mechanistic details are of significance to understand the path leading from soluble Tau to the ordered structure of Tau fibers. This approach proved to be successful for studying the conformational changes of (phosphorylated) full-length Tau and can potentially be extended to the study of other IDPs that undergo various PTMs.


Intrinsically Disordered Proteins , tau Proteins , Phosphorylation , tau Proteins/chemistry , Magnetic Resonance Spectroscopy , Protein Conformation , Electron Spin Resonance Spectroscopy , Intrinsically Disordered Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular
3.
iScience ; 26(10): 107855, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37766968

UreG is a cytosolic GTPase involved in the maturation network of urease, an Ni-containing bacterial enzyme. Previous investigations in vitro showed that UreG features a flexible tertiary organization, making this protein the first enzyme discovered to be intrinsically disordered. To determine whether this heterogeneous behavior is maintained in the protein natural environment, UreG structural dynamics was investigated directly in intact bacteria by in-cell EPR. This approach, based on site-directed spin labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy, enables the study of proteins in their native environment. The results show that UreG maintains heterogeneous structural landscape in-cell, existing in a conformational ensemble of two major conformers, showing either random coil-like or compact properties. These data support the physiological relevance of the intrinsically disordered nature of UreG and indicates a role of protein flexibility for this specific enzyme, possibly related to the regulation of promiscuous protein interactions for metal ion delivery.

4.
bioRxiv ; 2023 Jul 13.
Article En | MEDLINE | ID: mdl-37503201

In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here, we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at atomic resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs led to the formation of XLF and X4L4 condensates in vitro which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome editing strategies.

5.
Chembiochem ; 24(15): e202300099, 2023 08 01.
Article En | MEDLINE | ID: mdl-36999435

The type 2 secretion system (T2SS) is a bacterial nanomachine composed of an inner membrane assembly platform, an outer membrane pore and a dynamic endopilus. T2SS endopili are organized into a homo-multimeric body formed by the major pilin capped by a heterocomplex of four minor pilins. The first model of the T2SS endopilus was recently released, even if structural dynamics insights are still required to decipher the role of each protein in the full tetrameric complex. Here, we applied continuous-wave and pulse EPR spectroscopy using nitroxide-gadolinium orthogonal labelling strategies to investigate the hetero-oligomeric assembly of the minor pilins. Overall, our data are in line with the endopilus model even if they evidenced conformational flexibility and alternative orientations at local scale of specific regions of minor pilins. The integration of different labelling strategies and EPR experiments demonstrates the pertinence of this approach to investigate protein-protein interactions in such multiprotein heterocomplexes.


Type II Secretion Systems , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Electron Spin Resonance Spectroscopy/methods , Proteins , Spin Labels
6.
Molecules ; 28(3)2023 Jan 31.
Article En | MEDLINE | ID: mdl-36771013

Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the local level, the dynamics of structural transitions in proteins. Here, we consider SDSL-EPR based on the selective grafting of a nitroxide on the protein under study, followed by X-band cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give a reliable interpretation on biological system dynamics, a numerical simulation of the spectra is required. However, regardless of the numerical tool chosen to perform such simulations, the number of parameters is often too high to provide unambiguous results. In this study, we have chosen SimLabel to perform such simulations. SimLabel is a graphical user interface (GUI) of Matlab, using some functions of Easyspin. An exhaustive review of the parameters used in this GUI has enabled to define the adjustable parameters during the simulation fitting and to fix the others prior to the simulation fitting. Among them, some are set once and for all (gy, gz) and others are determined (Az, gx) thanks to a supplementary X-band spectrum recorded on a frozen solution. Finally, we propose guidelines to perform the simulation of X-band cw-EPR spectra of nitroxide labeled proteins at room temperature, with no need of uncommon higher frequency spectrometry and with the minimal number of variable parameters.


Nitrogen Oxides , Proteins , Electron Spin Resonance Spectroscopy/methods , Spin Labels , Nitrogen Oxides/chemistry , Proteins/chemistry
7.
Chemistry ; 28(66): e202202249, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-36202758

One of the greatest current challenges in structural biology is to study protein dynamics over a wide range of timescales in complex environments, such as the cell. Among magnetic resonances suitable for this approach, electron paramagnetic resonance spectroscopy coupled to site-directed spin labeling (SDSL-EPR) has emerged as a promising tool to study protein local dynamics and conformational ensembles. In this work, we exploit the sensitivity of nitroxide labels to report protein local dynamics at room temperature. We demonstrate that such studies can be performed while preserving both the integrity of the cells and the activity of the protein under investigation. Using this approach, we studied the structural dynamics of the chaperone NarJ in its natural host, Escherichia coli. We established that spin-labeled NarJ is active inside the cell. We showed that the cellular medium affects NarJ structural dynamics in a site-specific way, while the structural flexibility of the protein is maintained. Finally, we present and discuss data on the time-resolved dynamics of NarJ in cellular context.


Molecular Chaperones , Nitrogen Oxides , Electron Spin Resonance Spectroscopy/methods , Spin Labels , Nitrogen Oxides/chemistry , Molecular Chaperones/chemistry
8.
Comput Struct Biotechnol J ; 20: 3695-3707, 2022.
Article En | MEDLINE | ID: mdl-35891793

Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iß (SET/TAF-Iß), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iß is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iß is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iß:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iß (a.k.a. SET/TAF-Iß ΔC)-which exhibits an unexpected, intrinsically highly dynamic behavior-is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations.

9.
Biomolecules ; 10(7)2020 07 16.
Article En | MEDLINE | ID: mdl-32708696

UreG is a P-loop GTP hydrolase involved in the maturation of nickel-containing urease, an essential enzyme found in plants, fungi, bacteria, and archaea. This protein couples the hydrolysis of GTP to the delivery of Ni(II) into the active site of apo-urease, interacting with other urease chaperones in a multi-protein complex necessary for enzyme activation. Whereas the conformation of Helicobacter pylori (Hp) UreG was solved by crystallography when it is in complex with two other chaperones, in solution the protein was found in a disordered and flexible form, defining it as an intrinsically disordered enzyme and indicating that the well-folded structure found in the crystal state does not fully reflect the behavior of the protein in solution. Here, isothermal titration calorimetry and site-directed spin labeling coupled to electron paramagnetic spectroscopy were successfully combined to investigate HpUreG structural dynamics in solution and the effect of Ni(II) and GTP on protein mobility. The results demonstrate that, although the protein maintains a flexible behavior in the metal and nucleotide bound forms, concomitant addition of Ni(II) and GTP exerts a structural change through the crosstalk of different protein regions.


Bacterial Proteins/metabolism , Guanosine Triphosphate/metabolism , Helicobacter pylori/metabolism , Nickel/metabolism , Phosphate-Binding Proteins/metabolism , Bacterial Proteins/chemistry , Crystallography, X-Ray , Helicobacter Infections/microbiology , Helicobacter pylori/chemistry , Humans , Models, Molecular , Phosphate-Binding Proteins/chemistry , Protein Conformation
10.
Chembiochem ; 21(4): 451-460, 2020 02 17.
Article En | MEDLINE | ID: mdl-31245902

Exploring the structure and dynamics of biomolecules in the context of their intracellular environment has become the ultimate challenge for structural biology. As the cellular environment is barely reproducible in vitro, investigation of biomolecules directly inside cells has attracted a growing interest. Among magnetic resonance approaches, site-directed spin labeling (SDSL) coupled to electron paramagnetic resonance (EPR) spectroscopy provides competitive and advantageous features to capture protein structure and dynamics inside cells. To date, several in-cell EPR approaches have been successfully applied to both bacterial and eukaryotic cells. In this review, the major advances of in-cell EPR spectroscopy are summarized, as well as the challenges this approach still poses.


Bacteria/ultrastructure , Electron Spin Resonance Spectroscopy/methods , Eukaryotic Cells/ultrastructure , Spin Labels , Membrane Proteins/ultrastructure
11.
Chemistry ; 25(60): 13766-13776, 2019 Oct 28.
Article En | MEDLINE | ID: mdl-31424584

1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.

12.
Front Aging Neurosci ; 11: 204, 2019.
Article En | MEDLINE | ID: mdl-31447664

Microtubules (MTs) play a fundamental role in many vital processes such as cell division and neuronal activity. They are key structural and functional elements in axons, supporting neurite differentiation and growth, as well as transporting motor proteins along the axons, which use MTs as support tracks. Tau is a stabilizing MT associated protein, whose functions are mainly regulated by phosphorylation. A disruption of the MT network, which might be caused by Tau loss of function, is observed in a group of related diseases called tauopathies, which includes Alzheimer's disease (AD). Tau is found hyperphosphorylated in AD, which might account for its loss of MT stabilizing capacity. Since destabilization of MTs after dissociation of Tau could contribute to toxicity in neurodegenerative diseases, a molecular understanding of this interaction and its regulation is essential.

13.
Mol Biotechnol ; 61(9): 650-662, 2019 Sep.
Article En | MEDLINE | ID: mdl-31201604

1-Aminocyclopropane carboxylic acid oxidase (ACCO) catalyzes the last step of ethylene biosynthesis in plants. Although some sets of structures have been described, there are remaining questions on the active conformation of ACCO and in particular, on the conformation and potential flexibility of the C-terminal part of the enzyme. Several techniques based on the introduction of a probe through chemical modification of amino acid residues have been developed for determining the conformation and dynamics of proteins. Cysteine residues are recognized as convenient targets for selective chemical modification of proteins, thanks to their relatively low abundance in protein sequences and to their well-mastered chemical reactivity. ACCOs have generally 3 or 4 cysteine residues in their sequences. By a combination of approaches including directed mutagenesis, activity screening on cell extracts, biophysical and biochemical characterization of purified enzymes, we evaluated the effect of native cysteine replacement and that of insertion of cysteines on the C-terminal part in tomato ACCO. Moreover, we have chosen to use paramagnetic labels targeting cysteine residues to monitor potential conformational changes by electron paramagnetic resonance (EPR). Given the level of conservation of the cysteines in ACCO from different plants, this work provides an essential basis for the use of cysteine as probe-anchoring residues.


Amino Acid Oxidoreductases/chemistry , Amino Acids, Cyclic/chemistry , Cysteine/chemistry , Ethylenes/chemistry , Nitrogen Oxides/chemistry , Plant Proteins/chemistry , Solanum lycopersicum/enzymology , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Amino Acid Substitution , Amino Acids, Cyclic/metabolism , Binding Sites , Cloning, Molecular , Cysteine/metabolism , Electron Spin Resonance Spectroscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Ethylenes/biosynthesis , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Solanum lycopersicum/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Nitrogen Oxides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spin Labels , Substrate Specificity
14.
Nat Commun ; 9(1): 5015, 2018 11 22.
Article En | MEDLINE | ID: mdl-30467313

The original version of this Article contained an error in the spelling of the author Emilien Etienne, which was incorrectly given as Emilien Ettiene. These errors have now been corrected in both the PDF and HTML versions of the Article.

15.
Sci Rep ; 8(1): 13846, 2018 09 14.
Article En | MEDLINE | ID: mdl-30218010

Tau is a Microtubule-associated protein that induces and stabilizes the formation of the Microtubule cytoskeleton and plays an important role in neurodegenerative diseases. The Microtubules binding region of Tau has been determined for a long time but where and how Tau binds to its partner still remain a topic of debate. We used Site Directed Spin Labeling combined with EPR spectroscopy to monitor Tau upon binding to either Taxol-stabilized MTs or to αß-tubulin when Tau is directly used as an inducer of MTs formation. Using maleimide-functionalized labels grafted on the two natural cysteine residues of Tau, we found in both cases that Tau remains highly flexible in these regions confirming the fuzziness of Tau:MTs complexes. More interestingly, using labels linked by a disulfide bridge, we evidenced for the first time thiol disulfide exchanges between αß-tubulin or MTs and Tau. Additionally, Tau fragments having the two natural cysteines or variants containing only one of them were used to determine the role of each cysteine individually. The difference observed in the label release kinetics between preformed MTs or Tau-induced MTs, associated to a comparison of structural data, led us to propose two putative binding sites of Tau on αß-tubulin.


Disulfides/metabolism , Sulfhydryl Compounds/metabolism , Tubulin/chemistry , Tubulin/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Animals , Binding Sites , Microtubules/metabolism , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Quaternary
16.
Nat Commun ; 9(1): 3333, 2018 08 20.
Article En | MEDLINE | ID: mdl-30127354

Mucormycosis is a life-threatening respiratory fungal infection predominantly caused by Rhizopus species. Mucormycosis has incompletely understood pathogenesis, particularly how abnormalities in iron metabolism compromise immune responses. Here we show how, as opposed to other filamentous fungi, Rhizopus spp. establish intracellular persistence inside alveolar macrophages (AMs). Mechanistically, lack of intracellular swelling of Rhizopus conidia results in surface retention of melanin, which induces phagosome maturation arrest through inhibition of LC3-associated phagocytosis. Intracellular inhibition of Rhizopus is an important effector mechanism, as infection of immunocompetent mice with swollen conidia, which evade phagocytosis, results in acute lethality. Concordantly, AM depletion markedly increases susceptibility to mucormycosis. Host and pathogen transcriptomics, iron supplementation studies, and genetic manipulation of iron assimilation of fungal pathways demonstrate that iron restriction inside macrophages regulates immunity against Rhizopus. Our findings shed light on the pathogenetic mechanisms of mucormycosis and reveal the role of macrophage-mediated nutritional immunity against filamentous fungi.


Host-Pathogen Interactions , Iron/metabolism , Lung/microbiology , Macrophages, Alveolar/metabolism , Rhizopus/physiology , Animals , Cell Wall/metabolism , Gene Expression Regulation , Macrophages, Alveolar/ultrastructure , Melanins/metabolism , Mice, Inbred C57BL , Microbial Viability , Models, Biological , Mucormycosis/genetics , Mucormycosis/microbiology , Mucormycosis/pathology , Phagosomes/metabolism , Phagosomes/ultrastructure , Rhizopus/growth & development , Spores, Fungal/physiology
17.
Angew Chem Int Ed Engl ; 57(5): 1366-1370, 2018 01 26.
Article En | MEDLINE | ID: mdl-29227566

Approaching protein structural dynamics and protein-protein interactions in the cellular environment is a fundamental challenge. Owing to its absolute sensitivity and to its selectivity to paramagnetic species, site-directed spin labeling (SDSL) combined with electron paramagnetic resonance (EPR) has the potential to evolve into an efficient method to follow conformational changes in proteins directly inside cells. Until now, the use of nitroxide-based spin labels for in-cell studies has represented a major hurdle because of their short persistence in the cellular context. The design and synthesis of the first maleimido-proxyl-based spin label (M-TETPO) resistant towards reduction and being efficient to probe protein dynamics by continuous wave and pulsed EPR is presented. In particular, the extended lifetime of M-TETPO enabled the study of structural features of a chaperone in the absence and presence of its binding partner at endogenous concentration directly inside cells.


Nitrogen Oxides/chemistry , Oocytes/metabolism , Xenopus Proteins/chemistry , Animals , Electron Spin Resonance Spectroscopy , Maleimides/chemistry , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Mutagenesis, Site-Directed , Nitrate Reductase/chemistry , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Spin Labels , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/growth & development
18.
J Phys Chem Lett ; 8(19): 4852-4857, 2017 Oct 05.
Article En | MEDLINE | ID: mdl-28933855

Site-directed spin labeling of native tyrosine residues in isolated domains of the protein PTBP1, using a Mannich-type reaction, was combined with conventional spin labeling of cysteine residues. Double electron-electron resonance (DEER) EPR measurements were performed for both the nitroxide-nitroxide and Gd(III)-nitroxide label combinations within the same protein molecule. For the prediction of distance distributions from a structure model, rotamer libraries were generated for the two linker forms of the tyrosine-reactive isoindoline-based nitroxide radical Nox. Only moderate differences exist between the spatial spin distributions for the two linker forms of Nox. This strongly simplifies DEER data analysis, in particular, if only mean distances need to be predicted.


Electron Spin Resonance Spectroscopy , Proteins/chemistry , Spin Labels , Cysteine , Electrons , Models, Molecular , Nitrogen Oxides , Tyrosine
19.
Sci Rep ; 7(1): 5977, 2017 07 20.
Article En | MEDLINE | ID: mdl-28729736

A growing body of literature on intrinsically disordered proteins (IDPs) led scientists to rethink the structure-function paradigm of protein folding. Enzymes are often considered an exception to the rule of intrinsic disorder (ID), believed to require a unique structure for catalysis. However, recent studies revealed the presence of disorder in several functional native enzymes. In the present work, we address the importance of dynamics for catalysis, by investigating the relationship between folding and activity in Sporosarcina pasteurii UreG (SpUreG), a P-loop GTPase and the first discovered native ID enzyme, involved in the maturation of the nickel-containing urease. The effect of denaturants and osmolytes on protein structure and activity was analyzed using circular dichroism (CD), Site-Directed Spin Labeling (SDSL) coupled to EPR spectroscopy, and enzymatic assays. Our data show that SpUreG needs a "flexibility window" to be catalytically competent, with both too low and too high mobility being detrimental for its activity.


Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Folding , Electron Spin Resonance Spectroscopy , GTP Phosphohydrolases/metabolism , Models, Molecular , Phosphate-Binding Proteins , Protein Conformation , Protein Denaturation , Spin Labels , Sporosarcina/enzymology , Temperature
20.
Biochim Biophys Acta ; 1857(1): 89-97, 2016 Jan.
Article En | MEDLINE | ID: mdl-26518384

The mitochondrial ATPase inhibitor, IF1, regulates the activity of the mitochondrial ATP synthase. The oligomeric state of IF1 related to pH is crucial for its inhibitory activity. Although extensive structural studies have been performed to characterize the oligomeric states of bovine IF1, only little is known concerning those of yeast IF1. While bovine IF1 can be found as an inhibitory dimer at low pH and a non-inhibitory tetramer at high pH, a monomer/dimer equilibrium has been described for yeast IF1, high pH values favoring the monomeric state. Combining different strategies involving the grafting of nitroxide spin labels combined with Electron Paramagnetic Resonance (EPR) spectroscopy, the present study brings the first structural characterization, at the residue level, of yeast IF1 in its dimeric form. The results show that the dimerization interface involves the central region of the peptide revealing that the dimer corresponds to a non-inhibitory state. Moreover, we demonstrate that the C-terminal region of the peptide is highly dynamic and that this segment is probably folded back onto the central region. Finally, the pH-dependence of the inter-label distance distribution has been observed indicating a conformational change between two structural states in the dimer.


Electron Spin Resonance Spectroscopy/methods , Protein Multimerization , Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , ATPase Inhibitory Protein
...