Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38746192

RESUMEN

OBJECTIVE: Recombinant monoclonal therapeutic antibodies like lecanemab, which target amyloid beta in Alzheimer's disease, offer a promising approach for modifying the disease progression. Due to its relatively short half-life, Lecanemab, administered as a bi-monthly infusion (typically 10mg/kg) has a relatively brief half-life. Interaction with abundant plasma proteins binder in the bloodstream can affect pharmacokinetics of drugs, including their half-life. In this study we investigated potential plasma protein binding interaction to lecanemab using lecanemab biosimilar. METHODS: Lecanemab biosimilar used in this study was based on publicly available sequences. ELISA and Western blotting were used to assess lecanemab biosimilar immunoreactivity in the fractions human plasma sample obtained through size exclusion chromatography. The binding of lecanemab biosimilar to candidate binders was confirmed by Western blotting, ELISA, and surface plasmon resonance analysis. RESULTS: Using a combination of equilibrium dialysis, ELISA, and Western blotting in human plasma, we first describe the presence of likely plasma protein binding partner to lecanemab biosimilar, and then identify fibrinogen as one of them. Utilizing surface plasmon resonance, we confirmed that lecanemab biosimilar does bind to fibrinogen, although with lower affinity than to monomeric amyloid beta. CONCLUSION: In the context of lecanemab therapy, these results imply that fibrinogen levels could impact the levels of free antibodies in the bloodstream and that fibrinogen might serve as a reservoir for lecanemab. More broadly, these results indicate that plasma protein binding may be an important consideration when clinically utilizing therapeutic antibodies in neurodegenerative disease.

2.
Alzheimers Dement ; 20(3): 1573-1585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38041855

RESUMEN

INTRODUCTION: A wide array of post-translational modifications of the tau protein occurs in Alzheimer's disease (AD) and they are critical to pathogenesis and biomarker development. Several promising tau markers, pT181, pT217, and pT231, rely on increased phosphorylation within a common molecular motif threonine-proline-proline (TPP). METHODS: We validated new and existing antibodies against pT217, pT231, pT175, and pT181, then combined immunohistochemistry (IHC) and immunoassays (ELISA) to broadly examine the phosphorylation of the tau TPP motif in AD brains. RESULTS: The tau burden, as examined by IHC and ELISA, correlates to Braak stages across all TPP sites. Moreover, we observed regional variability across four TPP motif phosphorylation sites in multiple brains of sporadic AD patients. DISCUSSION: We conclude that there is an elevation of TPP tau phosphorylation in AD brains as disease advances. The regional variability of pTPP tau suggests that examining different phosphorylation sites is essential for a comprehensive assessment of tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Fosforilación , Treonina/metabolismo , Encéfalo/patología , Prolina/metabolismo
3.
Front Neurosci ; 17: 1204233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37650102

RESUMEN

Introduction: The central and peripheral nervous systems provide cholinergic innervation in the colon. The ability to assess their neuroanatomical distinctions is still a challenge. The pig is regarded as a relevant translational model due to the close similarity of its enteric nervous system (ENS) with that of human. Opioid-induced constipation is one of the most common side effects of opioid therapy. Methods: We developed an approach to differentiate the central and peripheral cholinergic innervation of the pig colon using double immunolabeling with a novel mouse anti-human peripheral type of choline acetyltransferase (hpChAT) antibody combined with a rabbit anti-common type of ChAT (cChAT) antibody, a reliable marker of cholinergic neurons in the central nervous system. We examined their spatial configurations in 3D images of the ENS generated from CLARITY-cleared colonic segments. The density was quantitated computationally using Imaris 9.7. We assessed changes in the distal colon induced by daily oral treatment for 4 weeks with the µ opioid receptor agonist, loperamide (0.4 or 3 mg/kg). Results: The double labeling showed strong cChAT immunoreactive (ir) fibers in the cervical vagus nerve and neuronal somata and fibers in the ventral horn of the sacral (S2) cord while hpChAT immunoreactivity was visualized only in the ENS but not in the vagus or sacral neural structures indicating the selectivity of these two antibodies. In the colonic myenteric plexus, dense hpChAT-ir neurons and fibers and varicose cChAT-ir fibers surrounding hpChAT-ir neurons were simultaneously visualized in 3D. The density of cChAT-ir varicose fibers in the outer submucosal plexus of both males and females were higher in the transverse and distal colon than in the proximal colon and in the myenteric plexus compared to the outer submucosal plexus and there was no cChAT innervation in the inner submucosal plexus. The density of hpChAT in the ENS showed no segmental or plexus differences in both sexes. Loperamide at the highest dose significantly decreased the density hpChAT-ir fibers + somata in the myenteric plexus of the distal colon. Discussion: These data showed the distinct density of central cholinergic innervation between myenteric and submucosal plexuses among colonic segments and the localization of cChAT-ir fibers around peripheral hpChAT neurons in 3D. The reduction of cholinergic myenteric innervation by chronic opiate treatment points to target altered prokinetic cholinergic pathway to counteract opiate constipation.

4.
Biochem Biophys Res Commun ; 666: 68-75, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37178507

RESUMEN

Alzheimer's disease is a neurologic disorder characterized by the accumulation of extracellular deposits of amyloid-ß (Aß) fibrils in the brain of patients. The key etiologic agent in Alzheimer's disease is not known; however oligomeric Aß appears detrimental to neuronal functions and increases Aß fibrils deposition. Previous research has shown that curcumin, a phenolic pigment of turmeric, has an effect on Aß assemblies, although the mechanism remains unclear. In this study, we demonstrate that curcumin disassembles pentameric oligomers made from synthetic Aß42 peptides (pentameric oAß42), using atomic force microscopy imaging followed by Gaussian analysis. Since curcumin shows keto-enol structural isomerism (tautomerism), the effect of keto-enol tautomerism on its disassembly was investigated. We have found that curcumin derivatives capable of keto-enol tautomerization also disassemble pentameric oAß42, while, a curcumin derivative incapable of tautomerization did not affect the integrity of pentameric oAß42. These experimental findings indicate that keto-enol tautomerism plays an essential role in the disassembly. We propose a mechanism for oAß42 disassembly by curcumin based on molecular dynamics calculations of the tautomerism. When curcumin and its derivatives bind to the hydrophobic regions of oAß42, the keto-form changes predominantly to the enol-form; this transition is associated with structural (twisting, planarization and rigidification) and potential energy changes that give curcumin enough force to act as a torsion molecular-spring that eventually disassembles pentameric oAß42. This proposed mechanism sheds new light on keto-enol tautomerism as a relevant chemical feature for designing such novel therapeutic drugs that target protein aggregation.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Humanos , Curcumina/química , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo
5.
Cells ; 12(2)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672153

RESUMEN

The precision of colocalization analysis is enhanced by 3D and is potentially more accurate than 2D. Even though 3D improves the visualization of colocalization analysis, rendering a colocalization model may generate a model with numerous polygons. We developed a 3D colocalization model of FtMt/LC3 followed by simplification. Double immunofluorescence staining of FtMt and LC3 was conducted, and stacked images were acquired. We used IMARIS to render the 3D colocalization model of FtMt/LC3 and further processed it with MeshLab to decimate and generate a less complex colocalization model. We examined the available simplification algorithm using MeshLab in detail and evaluated the feasibility of each procedure in generating a model with less complexity. The quality of the simplified model was subsequently assessed. MeshLab's available shaders were scrutinized to facilitate the spatial colocalization determination. Finally, we showed that QECD was the most effective method for reducing the polygonal complexity of the colocalization model without compromising its quality. In addition, we would recommend implementing the x-ray shader, which we found useful for visualizing colocalization. As 3D was found to be more accurate in quantifying colocalization, our study provides a novel and dependable method for rendering 3D models for colocalization analysis.


Asunto(s)
Imagenología Tridimensional , Imagenología Tridimensional/métodos , Rayos X , Técnica del Anticuerpo Fluorescente
6.
Chembiochem ; 23(8): e202200029, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35165998

RESUMEN

Amyloid ß (Aß) oligomers play a critical role in the pathology of Alzheimer's disease. Recently, we reported that a conformation-restricted Aß42 with an intramolecular disulfide bond through cysteine residues at positions 17/28 formed stable oligomers with potent cytotoxicity. To further optimize this compound as a toxic conformer model, we synthesized three analogues with a combination of cysteine and homocysteine at positions 17/28. The analogues with Cys-Cys, Cys-homoCys, or homoCys-Cys, but not the homoCys-homoCys analogue, exhibited potent cytotoxicity against SH-SY5Y and THP-1 cells even at 10 nM. In contrast, the cytotoxicity of conformation-restricted analogues at positions 16/29 or 18/27 was significantly weaker than that of wild-type Aß42. Furthermore, thioflavin-T assay, non-denaturing gel electrophoresis, and morphological studies suggested that the majority of these conformation-restricted analogues exists in an oligomeric state in cell culture medium, indicating that the toxic conformation of Aß42, rather than the oligomeric state, is essential to induce cytotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/patología , Amiloide/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Cisteína , Disulfuros/química , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad
7.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008961

RESUMEN

Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein associated with neurodegenerative diseases. In patients with progressive supranuclear palsy (PSP), FtMt was shown to accumulate in nigral neurons. Here, we investigated FtMt and LC3 in the post-mortem midbrain of PSP patients to reveal novel aspects of the pathology. Immunohistochemistry was used to assess the distribution and abnormal changes in FtMt and LC3 immunoreactivities. Colocalization analysis using double immunofluorescence was performed, and subcellular patterns were examined using 3D imaging and modeling. In the substantia nigra pars compacta (SNc), strong FtMt-IR and LC3-IR were observed in the neurons of PSP patients. In other midbrain regions, such as the superior colliculus, the FtMt-IR and LC3-IR remained unchanged. In the SNc, nigral neurons were categorized into four patterns based on subcellular LC3/FtMt immunofluorescence intensities, degree of colocalization, and subcellular overlapping. This categorization suggested that concomitant accumulation of LC3/FtMt is related to mitophagy processes. Using the LC3-IR to stage neuronal damage, we retraced LC3/FtMt patterns and revealed the progression of FtMt accumulation in nigral neurons. Informed by these findings, we proposed a hypothesis to explain the function of FtMt during PSP progression.


Asunto(s)
Ferritinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Sustancia Negra/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades , Ferritinas/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Mesencéfalo/metabolismo , Mesencéfalo/patología , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mitofagia , Unión Proteica , Transporte de Proteínas , Sustancia Negra/patología , Parálisis Supranuclear Progresiva/diagnóstico , Parálisis Supranuclear Progresiva/etiología
8.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055076

RESUMEN

The most common type of dementia, Alzheimer's disease, is associated with senile plaques formed by the filamentous aggregation of hydrophobic amyloid-ß (Aß) in the brains of patients. Small oligomeric assemblies also occur and drugs and chemical compounds that can interact with such assemblies have attracted much attention. However, these compounds need to be solubilized in appropriate solvents, such as ethanol, which may also destabilize their protein structures. As the impact of ethanol on oligomeric Aß assembly is unknown, we investigated the effect of various concentrations of ethanol (0 to 7.2 M) on Aß pentameric assemblies (Aßp) by combining blue native-PAGE (BN-PAGE) and ambient air atomic force microscopy (AFM). This approach was proven to be very convenient and reliable for the quantitative analysis of Aß assembly. The Gaussian analysis of the height histogram obtained from the AFM images was correlated with band intensity on BN-PAGE for the quantitative estimation of Aßp. Our observations indicated up to 1.4 M (8.3%) of added ethanol can be used as a solvent/vehicle without quantitatively affecting Aß pentamer stability. Higher concentration induced significant destabilization of Aßp and eventually resulted in the complete disassembly of Aßp.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Etanol/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Electroforesis , Etanol/farmacología , Humanos , Microscopía de Fuerza Atómica , Agregación Patológica de Proteínas
9.
ACS Chem Neurosci ; 12(18): 3418-3432, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464082

RESUMEN

Characterization of amyloid ß (Aß) oligomers, the transition species present prior to the formation of Aß fibrils and that have cytotoxicity, has become one of the major topics in the investigations of Alzheimer's disease (AD) pathogenesis. However, studying pathophysiological properties of Aß oligomers is challenging due to the instability of these protein complexes in vitro. Here, we report that conformation-restricted Aß42 with an intramolecular disulfide bond at positions 17 and 28 (SS-Aß42) formed stable Aß oligomers in vitro. Thioflavin T binding assays, nondenaturing gel electrophoresis, and morphological analyses revealed that SS-Aß42 maintained oligomeric structure, whereas wild-type Aß42 and the highly aggregative Aß42 mutant with E22P substitution (E22P-Aß42) formed Aß fibrils. In agreement with these observations, SS-Aß42 was more cytotoxic compared to the wild-type and E22P-Aß42 in cell cultures. Furthermore, we developed a monoclonal antibody, designated TxCo-1, using the toxic conformation of SS-Aß42 as immunogen. X-ray crystallography of the TxCo-1/SS-Aß42 complex, enzyme immunoassay, and immunohistochemical studies confirmed the recognition site and specificity of TxCo-1 to SS-Aß42. Immunohistochemistry with TxCo-1 antibody identified structures resembling senile plaques and vascular Aß in brain samples of AD subjects. However, TxCo-1 immunoreactivity did not colocalize extensively with Aß plaques identified with conventional Aß antibodies. Together, these findings indicate that Aß with a turn at positions 22 and 23, which is prone to form Aß oligomers, could show strong cytotoxicity and accumulated in brains of AD subjects. The SS-Aß42 and TxCo-1 antibody should facilitate understanding of the pathological role of Aß with toxic conformation in AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Amiloide , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Fragmentos de Péptidos , Placa Amiloide
10.
Acta Histochem Cytochem ; 54(3): 97-104, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34276103

RESUMEN

Mitochondrial ferritin (FtMt) is a novel ferritin that is localized in the mitochondria. FtMt expression is low in the liver and spleen, and high in the heart, testis, and brain. We previously detected FtMt in dopaminergic neurons in the substantia nigra pars compacta (SNc) in human and monkey midbrains. We investigated the localization and expression of FtMt in the midbrain of patients with progressive supranuclear palsy (PSP) and controls using a monoclonal antibody (C65-2) against human FtMt. FtMt immunoreactivity was weakly detected in neuromelanin-containing neurons in the SNc and ventral tegmental area (VTA) of control cases compared with PSP, which exhibited a remarkable increase in FtMt immunoreactivity. Preincubation of C65-2 with the immunizing FtMt peptide significantly reduced the staining, indicating the specificity of C65-2. Several puncta were observed outside the neurons of PSP, in contrast with the control cases. Double immunofluorescence histochemistry for FtMt and tyrosine hydroxylase (TH), glial fibrillary acidic protein, and Iba1 showed localization of FtMt in dopaminergic neurons, microglia, and astrocytes in PSP. Furthermore, FtMt immunoreactivity was detected in a few TH-negative neurons. In the SNc and VTA, FtMt immunoreactivity colocalized with phosphorylated tau immunoreactivity. Our results indicate that FtMt is involved in the pathology of PSP. Clarifying the involvement of FtMt in PSP is of great interest.

12.
Neurogastroenterol Motil ; 33(4): e14030, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33174295

RESUMEN

BACKGROUND: We previously reported the specificity of a novel anti-human peripheral choline acetyltransferase (hpChAT) antiserum for immunostaining of cholinergic neuronal cell bodies and fibers in the human colon. In this study, we investigate 3D architecture of intrinsic cholinergic innervation in the human sigmoid colon and the relationship with nitrergic neurons in the enteric plexus. METHODS: We developed a modified CLARITY tissue technique applicable for clearing human sigmoid colon specimens and immunostaining with hpChAT antiserum and co-labeling with neuronal nitric oxide synthase (nNOS) antibody. The Z-stack confocal images were processed for 3D reconstruction/segmentation/digital tracing and computational quantitation by Imaris 9.2 and 9.5. KEY RESULTS: In the mucosa, a local micro-neuronal network formed of hpChAT-ir fibers and a few neuronal cell bodies were digitally assembled. Three layers of submucosal plexuses were displayed in 3D structure that were interconnected by hpChAT-ir fiber bundles and hpChAT-ir neurons were rarely co-labeled by nNOS. In the myenteric plexus, 30.1% of hpChAT-ir somas including Dogiel type I and II were co-labeled by nNOS and 3 classes of hpChAT-ir nerve fiber strands were visualized in 3D images and videos. The density and intensity values of hpChAT-ir fibers in 3D structure were significantly higher in the circular than in the longitudinal layer. CONCLUSIONS AND INFERENCES: The intrinsic cholinergic innervation in the human sigmoid colon was demonstrated layer by layer for the first time in 3D microstructures. This may open a new venue to assess the structure-function relationships and pathological alterations in colonic diseases.


Asunto(s)
Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/metabolismo , Colon Sigmoide/diagnóstico por imagen , Colon Sigmoide/metabolismo , Imagenología Tridimensional/métodos , Adulto , Colina O-Acetiltransferasa/análisis , Neuronas Colinérgicas/química , Colon Sigmoide/química , Sistema Nervioso Entérico/química , Sistema Nervioso Entérico/diagnóstico por imagen , Sistema Nervioso Entérico/metabolismo , Femenino , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad
13.
Acta Neuropathol Commun ; 7(1): 215, 2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864418

RESUMEN

Progranulin (PGRN) is a protein encoded by the GRN gene with multiple identified functions including as a neurotrophic factor, tumorigenic growth factor, anti-inflammatory cytokine and regulator of lysosomal function. A single mutation in the human GRN gene resulting in reduced PGRN expression causes types of frontotemporal lobar degeneration resulting in frontotemporal dementia. Prosaposin (PSAP) is also a multifunctional neuroprotective secreted protein and regulator of lysosomal function. Interactions of PGRN and PSAP affect their functional properties. Their roles in Alzheimer's disease (AD), the leading cause of dementia, have not been defined. In this report, we examined in detail the cellular expression of PGRN in middle temporal gyrus samples of a series of human brain cases (n = 45) staged for increasing plaque pathology. Immunohistochemistry showed PGRN expression in cortical neurons, microglia, cerebral vessels and amyloid beta (Aß) plaques, while PSAP expression was mainly detected in neurons and Aß plaques, and to a limited extent in astrocytes. We showed that there were increased levels of PGRN protein in AD cases and corresponding increased levels of PSAP. Levels of PGRN and PSAP protein positively correlated with amyloid beta (Aß), with PGRN levels correlating with phosphorylated tau (serine 205) levels in these samples. Although PGRN colocalized with lysosomal-associated membrane protein-1 in neurons, most PGRN associated with Aß plaques did not. Aß plaques with PGRN and PSAP deposits were identified in the low plaque non-demented cases suggesting this was an early event in plaque formation. We did not observe PGRN-positive neurofibrillary tangles. Co-immunoprecipitation studies of PGRN from brain samples identified only PSAP associated with PGRN, not sortilin or other known PGRN-binding proteins, under conditions used. Most PGRN associated with Aß plaques were immunoreactive for PSAP showing a high degree of colocalization of these proteins that did not change between disease groups. As PGRN supplementation has been considered as a therapeutic approach for AD, the possible involvement of PGRN and PSAP interactions in AD pathology needs to be further considered.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Lisosomas/metabolismo , Placa Amiloide/metabolismo , Progranulinas/metabolismo , Saposinas/metabolismo , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Anciano de 80 o más Años , Células Cultivadas , Femenino , Humanos , Masculino , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/patología
14.
Front Neuroanat ; 13: 37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040770

RESUMEN

Choline acetyltransferase (ChAT), the enzyme synthesizing acetylcholine (ACh), has an exon-skipping splice variant which is expressed preferentially in the peripheral nervous system (PNS) and thus termed peripheral ChAT (pChAT). A rabbit antiserum previously produced against rat pChAT (rpChAT) has been used for immunohistochemistry (IHC) to study peripheral cholinergic structures in various animals. The present study was undertaken to develop a specific antiserum against a predicted human pChAT (hpChAT) protein. A novel mouse antiserum has been successfully raised against a unique 14-amino acid sequence of hpChAT protein. Our Western blot using this antiserum (termed here anti-hpChAT serum) on human colon extracts revealed only a single band of 47 kDa, matching the deduced size of hpChAT protein. By IHC, the antiserum gave intense staining in many neuronal cells and fibers of human colon but not brain, and such a pattern of staining seemed identical with that reported in colon of various animals using anti-rpChAT serum. In the antibody-absorption test, hpChAT-immunoreactive staining in human colon was completely blocked by using the antiserum pre-absorbed with the antigen peptide. Double immunofluorescence in human colon moreover indicated that structures stained with anti-hpChAT were also stained with anti-rpChAT, and vice versa. hpChAT antiserum allowed the identification of cell types, as Dogiel type cells in intramural plexuses, and fiber innervation of colon muscles and mucosae. The present results demonstrate the specificity and reliability of the hpChAT antiserum as a novel tool for immunohistochemical studies in human colon, opening venues to map cholinergic innervation in other human PNS tissues.

15.
J Cell Sci ; 132(8)2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30872457

RESUMEN

Juvenile animals possess distinct properties that are missing in adults. These properties include capabilities for higher growth, faster wound healing, plasticity and regeneration. However, the molecular mechanisms underlying these juvenile physiological properties are not fully understood. To obtain insight into the distinctiveness of juveniles from adults at the molecular level, we assessed long noncoding RNAs (lncRNAs) that are highly expressed selectively in juvenile cells. The noncoding elements of the transcriptome were investigated in hepatocytes and cardiomyocytes isolated from juvenile and adult mice. Here, we identified 62 juvenility-associated lncRNAs (JAlncs), which are selectively expressed in both hepatocytes and cardiomyocytes from juvenile mice. Among these common (shared) JAlncs, Gm14230 is evolutionarily conserved and is essential for cellular juvenescence. Loss of Gm14230 impairs cell growth and causes cellular senescence. Gm14230 safeguards cellular juvenescence through recruiting the histone methyltransferase Ezh2 to Tgif2, thereby repressing the functional role of Tgif2 in cellular senescence. Thus, we identify Gm14230 as a juvenility-selective lncRNA required to maintain cellular juvenescence.


Asunto(s)
Envejecimiento/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteínas de Homeodominio/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/metabolismo , Animales , Ciclo Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación de la Expresión Génica , Hepatocitos/citología , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Células 3T3 NIH , Proteínas Represoras/genética , Transcriptoma , Transfección
16.
Exp Gerontol ; 111: 53-64, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29981398

RESUMEN

Decrease in multiple functions occurs in the brain with aging, all of which can contribute to age-related cognitive and locomotor impairments. Brain atrophy specifically in hippocampus, medial prefrontal cortex (mPFC), and striatum, can contribute to this age-associated decline in function. Our recent metabolomics analysis showed age-related changes in these brain regions. To further understand the aging processes, analysis using a proteomics approach was carried out. This study was conducted to identify proteome profiles in the hippocampus, mPFC, and striatum of 14-, 18-, 23-, and 27-month-old rats. Proteomics analysis using ultrahigh performance liquid chromatography coupled with Q Exactive HF Orbitrap mass spectrometry identified 1074 proteins in the hippocampus, 871 proteins in the mPFC, and 241 proteins in the striatum. Of these proteins, 97 in the hippocampus, 25 in mPFC, and 5 in striatum were differentially expressed with age. The altered proteins were classified into three ontologies (cellular component, molecular function, and biological process) containing 44, 38, and 35 functional groups in the hippocampus, mPFC, and striatum, respectively. Most of these altered proteins participate in oxidative phosphorylation (e.g. cytochrome c oxidase and ATP synthase), glutathione metabolism (e.g. peroxiredoxins), or calcium signaling pathway (e.g. protein S100B and calmodulin). The most prominent changes were observed in the oldest animals. These results suggest that alterations in oxidative phosphorylation, glutathione metabolism, and calcium signaling pathway are involved in cognitive and locomotor impairments in aging.


Asunto(s)
Envejecimiento/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Corteza Prefrontal/metabolismo , Proteoma/metabolismo , Animales , Atrofia , Cromatografía Liquida , Masculino , Proteoma/genética , Proteómica , Ratas , Ratas Sprague-Dawley
17.
Brain Struct Funct ; 222(7): 3043-3061, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28247020

RESUMEN

The octopus arm contains a tridimensional array of muscles with a massive sensory-motor system. We herein provide the first evidence for the existence of serotonin (5-HT) in the octopus arm nervous system and investigated its distribution using immunohistochemistry. 5-HT-like immunoreactive (5-HT-lir) nerve cell bodies were exclusively localized in the cellular layer of the axial nerve cord. Those cell bodies emitted 5-HT-lir nerve fibers in the direction of the sucker, the intramuscular nerves cords, the ganglion of the sucker, and the intrinsic musculature. Others 5-HT-lir nerve fibers were observed in various tissues, including the cerebrobrachial tract, the skin, and the blood vessels. 5-HT was detected by high-performance liquid chromatography in various regions of the octopus arm at levels matching the density of 5-HT-lir staining. The absence of 5-HT-lir interconnections between the cerebrobrachial tract and the other components of the axial nerve cord suggests that two types of 5-HT-lir innervation exist in the arm. One type, which originates from the brain, may innervate the periphery through the cerebrobrachial tract. Another type, which originates in the cellular layer of the axial nerve cord, may form an intrinsic network in the arm. In addition, 5-HT-lir fibers likely emitted from the neuropil of the axial nerve cord were found to project into cells showing staining for peripheral choline acetyltransferase, a marker of sensory cells of the sucker. Taken together, these observations suggest that intrinsic 5-HT-lir innervation may participate in the sensory transmission in the octopus arm.


Asunto(s)
Extremidades/anatomía & histología , Fibras Nerviosas/metabolismo , Neuronas/metabolismo , Serotonina/metabolismo , Animales , Arteria Braquial/inervación , Colina O-Acetiltransferasa/metabolismo , Cromatografía Líquida de Alta Presión , Técnicas Electroquímicas , Extremidades/fisiología , Octopodiformes
18.
Exp Neurol ; 291: 51-61, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28163159

RESUMEN

Mitochondrial ferritin (FtMt) is a type of ferritin that sequesters iron. Previous studies have shown that FtMt is expressed by dopaminergic neurons in the substantia nigra and that it may be involved in the pathology of Parkinson's disease. However, the functional roles of FtMt in dopaminergic neurons remain unclear. In this study, we investigated the function of FtMt in α-synuclein regulation and its antioxidant roles in dopaminergic cells using human dopaminergic neuroblastoma cells, SH-SY5Y. In physiological conditions, FtMt knockdown increased α-synuclein expression at the protein level but not at the mRNA level. By contrast, FtMt overexpression reduced α-synuclein expression at the protein level but not at the mRNA level. FtMt enhanced the iron levels in mitochondria but decreased the iron levels in the intracellular labile iron pool. We found that FeCl2 could abolish the effects of FtMt overexpression on α-synuclein expression. Under oxidative stress conditions induced by H2O2, we found that H2O2 treatment induced FtMt and α-synuclein expression at both the mRNA and protein levels in a dose-dependent manner. FtMt overexpression protected cells against oxidative stress and alleviated the enhanced α-synuclein expression induced by H2O2 at the posttranscriptional level. Our results indicate that FtMt modulates α-synuclein expression at the posttranscriptional level via iron regulation in physiological conditions. FtMt expression is enhanced under oxidative stress conditions, where FtMt protects cells against the oxidative stress as well as plays an important role in maintaining α-synuclein levels.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Ferritinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , alfa-Sinucleína/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Deferoxamina/farmacología , Compuestos Ferrosos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuroblastoma/patología , Sideróforos/farmacología , Tretinoina/farmacología , Tirosina 3-Monooxigenasa/metabolismo
19.
Front Neuroanat ; 10: 116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27994541

RESUMEN

Brain natriuretic peptide (BNP) exerts its functions through NP receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn (DH) of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and dorsal root ganglion (DRG). BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the DH of the spinal cord and in the neurons of the intermediate column (IC) and ventral horn (VH). Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II) labeled with calcitonin gene-related peptide (CGRP), suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase (ChAT) in the motor neurons of the VH. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NP receptor-A (NPR-A) and/or NP receptor-B (NPR-B) at the spinal cord level.

20.
Neurobiol Aging ; 47: 168-179, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27599360

RESUMEN

Mitochondrial ferritin (FtMt) is believed to play an antioxidant role via iron regulation, and FtMt gene mutation has been reported in age-related macular degeneration (AMD). However, little is known about FtMt's functions in the retina and any links to AMD. In this study, we observed age-related increase in FtMt and hypoxia-inducible factor-1α (HIF-1α) in murine retinal pigment epithelium (RPE). FtMt overexpression in ARPE-19 cells stabilized HIF-1α, and increased the secretion of vascular endothelial growth factor. Conversely, HIF-1α stabilization reduced the protein level of the mature, functional form of FtMt. FtMt-overexpressing ARPE-19 cells exhibited less oxidative phosphorylation but unchanged production of adenosine triphosphate, enhanced mitochondrial fission, and triggered mitophagy in a HIF-1α-dependent manner. These findings suggest that increased FtMt in RPE may be protective via triggering mitophagy but cause wet AMD by inducing neovascularization due to increased vascular endothelial growth factor secretion. However, reduced level of functional FtMt in RPE under hypoxia may allow dry AMD through susceptibility to age-related stress.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Ferritinas/genética , Ferritinas/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Degeneración Macular/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes , Células Cultivadas , Humanos , Hierro/metabolismo , Masculino , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , Mitofagia , Mutación , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...