Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796067

RESUMEN

The myocyte enhancer factor (MEF2) family of transcription factors, originally discovered for its pivotal role in muscle development and function, has emerged as an essential regulator in various aspects of brain development and neuronal plasticity. The MEF2 transcription factors are known to regulate numerous important genes in the nervous system, including brain-derived neurotrophic factor (BDNF), a small secreted neurotrophin responsible for promoting the survival, growth, and differentiation of neurons. The expression of the Bdnf gene is spatiotemporally controlled by various transcription factors binding to both its proximal and distal regulatory regions. While previous studies have investigated the connection between MEF2 transcription factors and Bdnf, the endogenous function of MEF2 factors in the transcriptional regulation of Bdnf remains largely unknown. Here, we aimed to deepen the knowledge of MEF2 transcription factors and their role in the regulation of Bdnf comparatively in rat cortical and hippocampal neurons. As a result, we demonstrate that the MEF2 transcription factor-dependent enhancer located at -4.8 kb from the Bdnf gene regulates the endogenous expression of Bdnf in hippocampal neurons. In addition, we confirm neuronal activity-dependent activation of the -4.8 kb enhancer in vivo. Finally, we show that specific MEF2 family transcription factors have unique roles in the regulation of Bdnf, with the specific function varying based on the particular brain region and stimuli. Altogether, we present MEF2 family transcription factors as crucial regulators of Bdnf expression, fine-tuning Bdnf expression through both distal and proximal regulatory regions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Elementos de Facilitación Genéticos , Hipocampo , Factores de Transcripción MEF2 , Neuronas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Animales , Hipocampo/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Neuronas/citología , Ratas , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Regulación de la Expresión Génica , Células Cultivadas , Ratas Sprague-Dawley
3.
Cell Mol Neurobiol ; 43(5): 1941-1956, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36056992

RESUMEN

Alzheimer disease (AD) is a multifactorial and age-dependent neurodegenerative disorder, whose pathogenesis, classically associated with the formation of senile plaques and neurofibrillary tangles, is also dependent on oxidative stress and neuroinflammation chronicization. Currently, the standard symptomatic therapy, based on acetylcholinesterase inhibitors, showed a limited therapeutic potential, whereas disease-modifying treatment strategies are still under extensive research. Previous studies have demonstrated that Oxotremorine-M (Oxo), a non-selective muscarinic acetylcholine receptors agonist, exerts neurotrophic functions in primary neurons, and modulates oxidative stress and neuroinflammation phenomena in rat brain. In the light of these findings, in this study, we aimed to investigate the neuroprotective effects of Oxo treatment in an in vitro model of AD, represented by differentiated SH-SY5Y neuroblastoma cells exposed to Aß1-42 peptide. The results demonstrated that Oxo treatment enhances cell survival, increases neurite length, and counteracts DNA fragmentation induced by Aß1-42 peptide. The same treatment was also able to block oxidative stress and mitochondria morphological/functional impairment associated with Aß1-42 cell exposure. Overall, these results suggest that Oxo, by modulating cholinergic neurotransmission, survival, oxidative stress response, and mitochondria functionality, may represent a novel multi-target drug able to achieve a therapeutic synergy in AD. Illustration of the main pathological hallmarks and mechanisms underlying AD pathogenesis, including neurodegeneration and oxidative stress, efficiently counteracted by treatment with Oxo, which may represent a promising therapeutic molecule. Created with BioRender.com under academic license.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratas , Animales , Humanos , Antioxidantes/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Oxotremorina/farmacología , Enfermedades Neuroinflamatorias , Acetilcolinesterasa , Péptidos beta-Amiloides , Neuroblastoma/patología , Receptores Muscarínicos
4.
Front Pharmacol ; 12: 658806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986683

RESUMEN

Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors reduced but not abolished it. Importantly, GUO-mediated neuron-like cell differentiation was independent of adenosine receptor activation as it was not altered by the blockade of these receptors. Noteworthy, the neuritogenic activity of GUO was not affected by blocking the phosphoinositide 3-kinase pathway, while it was reduced by inhibitors of protein kinase C or soluble guanylate cyclase. Furthermore, the inhibitor of the enzyme heme oxygenase-1 but not that of nitric oxide synthase reduced GUO-induced neurite outgrowth. Interestingly, we found that GUO was largely metabolized into guanine by the purine nucleoside phosphorylase (PNP) enzyme released from cells. Taken together, our results suggest that GUO, promoting neuroblastoma cell differentiation, may represent a potential therapeutic agent; however, due to its spontaneous extracellular metabolism, the role played by the GUO-PNP-guanine system needs to be further investigated.

5.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291390

RESUMEN

Acute or chronic administration of guanosine (GUO) induces anxiolytic-like effects, for which the adenosine (ADO) system involvement has been postulated yet without a direct experimental evidence. Thus, we aimed to investigate whether adenosine receptors (ARs) are involved in the GUO-mediated anxiolytic-like effect, evaluated by three anxiety-related paradigms in rats. First, we confirmed that acute treatment with GUO exerts an anxiolytic-like effect. Subsequently, we investigated the effects of pretreatment with ADO or A1R (CPA, CCPA) or A2AR (CGS21680) agonists 10 min prior to GUO on a GUO-induced anxiolytic-like effect. All the combined treatments blocked the GUO anxiolytic-like effect, whereas when administered alone, each compound was ineffective as compared to the control group. Interestingly, the pretreatment with nonselective antagonist caffeine or selective A1R (DPCPX) or A2AR (ZM241385) antagonists did not modify the GUO-induced anxiolytic-like effect. Finally, binding assay performed in hippocampal membranes showed that [3H]GUO binding became saturable at 100-300 nM, suggesting the existence of a putative GUO binding site. In competition experiments, ADO showed a potency order similar to GUO in displacing [3H]GUO binding, whereas AR selective agonists, CPA and CGS21680, partially displaced [3H]GUO binding, but the sum of the two effects was able to displace [3H]GUO binding to the same extent of ADO alone. Overall, our results strengthen previous data supporting GUO-mediated anxiolytic-like effects, add new evidence that these effects are blocked by A1R and A2AR agonists and pave, although they do not elucidate the mechanism of GUO and ADO receptor interaction, for a better characterization of GUO binding sites in ARs.


Asunto(s)
Ansiedad/etiología , Ansiedad/metabolismo , Guanosina/efectos adversos , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Ansiedad/psicología , Conducta Animal , Membrana Celular/metabolismo , Oscuridad , Relación Dosis-Respuesta a Droga , Guanosina/metabolismo , Hipocampo/metabolismo , Luz , Ratas , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/genética
6.
Sci Rep ; 9(1): 14233, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578381

RESUMEN

Recently we found that acute treatment with Oxotremorine (Oxo), a non-selective mAChRs agonist, up-regulates heat shock proteins and activates their transcription factor heat shock factor 1 in the rat hippocampus. Here we aimed to investigate: a) if acute treatment with Oxo may regulate pro-inflammatory or anti-inflammatory cytokines and oxidative stress in the rat hippocampus; b) if chronic restraint stress (CRS) induces inflammatory or oxidative alterations in the hippocampus and whether such alterations may be affected by chronic treatment with Oxo. In the acute experiment, rats were injected with single dose of Oxo (0.4 mg/kg) and sacrificed at 24 h, 48 h and 72 h. In the CRS experiment, the rats were exposed for 21 days to the CRS and then were treated with Oxo (0.2 mg/kg) for further 10 days. The acute Oxo treatment showed an ability to significantly reduce reactive oxygen species (ROS), singlet oxygen (1O2), pro-inflammatory cytokines levels (IL-1ß and IL-6) and phosphorylated NF-κB-p65. Acute Oxo treatment also increased superoxide dismutase (SOD)-2 protein levels and stimulated SOD activity. No differences were detected in the anti-inflammatory cytokine levels, including IL-10 and TGF-ß1. In the group of rats exposed to the CRS were found increased hippocampal IL-1ß and IL-6 levels, together with a reduction of SOD activity level. These changes produced by CRS were counteracted by chronic Oxo treatment. In contrast, the upregulation of ROS and 1O2 levels in the CRS group was not counteracted by chronic Oxo treatment. The results revealed a hippocampal anti-inflammatory and antioxidant effect of Oxo treatment in both basal conditions and anti-inflammatory in the CRS rat model.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Fármacos Neuroprotectores/farmacología , Oxotremorina/farmacología , Receptores Muscarínicos/efectos de los fármacos , Animales , Hipocampo/metabolismo , Hidrocortisona/sangre , Inflamación , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Interleucina-6/biosíntesis , Interleucina-6/genética , Masculino , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores Muscarínicos/metabolismo , Restricción Física/efectos adversos , Escopolamina/farmacología , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/biosíntesis , Superóxido Dismutasa-1/genética , Factor de Transcripción ReIA/metabolismo
7.
J Neuroinflammation ; 16(1): 44, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777084

RESUMEN

BACKGROUND: Aß1-42 peptide abnormal production is associated with the development and maintenance of neuroinflammation and oxidative stress in brains from Alzheimer disease (AD) patients. Suppression of neuroinflammation may then represent a suitable therapeutic target in AD. We evaluated the efficacy of IFNß1a in attenuating cognitive impairment and inflammation in an animal model of AD. METHODS: A rat model of AD was obtained by intra-hippocampal injection of Aß1-42 peptide (23 µg/2 µl). After 6 days, 3.6 µg of IFNß1a was given subcutaneously (s.c.) for 12 days. Using the novel object recognition (NOR) test, we evaluated changes in cognitive function. Measurement of pro-inflammatory or anti-inflammatory cytokines, reactive oxygen species (ROS), and SOD activity levels was performed in the hippocampus. Data were evaluated by one-way ANOVA with Fisher's Protected Least Significant Difference (PLSD) test. RESULTS: We showed that treatment with IFNß1a was able to reverse memory impairment and to counteract microglia activation and upregulation of pro-inflammatory cytokines (IL-6, IL-1ß) in the hippocampus of Aß1-42-injected rats. The anti-inflammatory cytokine IL-10, significantly reduced in the Aß1-42 animals, recovered to control levels following IFNß1a treatment. IFNß1a also reduced ROS and lipids peroxidation and increased SOD1 protein levels in the hippocampus of Aß1-42-injected rats. CONCLUSION: This study shows that IFNß1a is able to reverse the inflammatory and cognitive effects of intra-hippocampal Aß1-42 in the rat. Given the role played by inflammation in AD pathogenesis and the established efficacy of IFNß1a in the treatment of inflammatory diseases of the central nervous system such as multiple sclerosis, its use may be a viable strategy to inhibit the pro-inflammatory cytokine and oxidative stress cascade associated with Aß deposition in the hippocampus of AD patients.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Inflamación/tratamiento farmacológico , Inflamación/etiología , Interferón beta-1a/uso terapéutico , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Animales , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Peroxidación de Lípido/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Fragmentos de Péptidos/toxicidad , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Factores de Tiempo
8.
Neuropharmacology ; 152: 67-77, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445101

RESUMEN

Neuronal events are regulated by the integration of several complex signaling networks in which G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are considered key players of an intense bidirectional cross-communication in the cell, generating signaling mechanisms that, at the same time, connect and diversify the traditional signal transduction pathways activated by the single receptor. For this receptor-receptor crosstalk, the two classes of receptors form heteroreceptor complexes resulting in RTKs transactivation and in growth-promoting signals. In this review, we describe heteroreceptor complexes between GPCR and RTKs in the central nervous system (CNS) and their functional effects in controlling a variety of neuronal effects, ranging from development, proliferation, differentiation and migration, to survival, repair, synaptic transmission and plasticity. In this interaction, RTKs can also recruit components of the G protein signaling cascade, creating a bidirectional intricate interplay that provides complex control over multiple cellular events. These heteroreceptor complexes, by the integration of different signals, have recently attracted a growing interest as novel molecular target for depressive disorders. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Asunto(s)
Receptor Cross-Talk/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Encéfalo/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Transducción de Señal/fisiología
9.
Front Pharmacol ; 9: 110, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515443

RESUMEN

Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptotic and neurotrophic effects, causes a decay of cognitive activities, whereas GUA administration in rats results in working memory improvement (prevented by L-NAME pre-treatment). This study was designed to investigate, in a model of SH-SY5Y neuroblastoma cell line, the signal transduction pathway activated by extracellular GUA. Altogether, our results showed that: (i) in addition to an enhanced phosphorylation of ASK1, p38 and JNK, likely linked to a non-massive and transient ROS production, the PKB/NO/sGC/cGMP/PKG/ERK cascade seems to be the main signaling pathway elicited by extracellular GUA; (ii) the activation of this pathway occurs in a pertussis-toxin sensitive manner, thus suggesting the involvement of a putative G protein coupled receptor; (iii) the GUA-induced NO production, strongly reduced by cell pre-treatment with L-NAME, is negatively modulated by the EPAC-cAMP-CaMKII pathway, which causes the over-expression of GDA that, in turn, reduces the levels of GUA. These molecular mechanisms activated by GUA may be useful to support our previous observation showing that GUA improves learning and memory functions through the stimulation of NO signaling pathway, and underscore the therapeutic potential of oral administration of guanine for treating memory-related disorders.

10.
J Cell Physiol ; 233(8): 6107-6116, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29323700

RESUMEN

The cholinergic system plays a crucial role in modulating in the central nervous system physiological responses such as neurogenesis, neuronal differentiation, synaptic plasticity, and neuroprotection. In a recent study, we showed that Oxotremorine-M, a non-selective muscarinic acetylcholine receptor agonist, is able to transactivate the fibroblast growth factor receptor and to produce a significant increase in the hippocampal primary neurite outgrowth. In the present study we aimed to explore in the rat hippocampus the possible effect of acute or chronic treatment with Oxotremorine-M on some heat shock proteins (Hsp60, Hsp70, Hsp90) and on activation of related transcription factor heat shock factor 1 (HSF1). Following single injection of Oxotremorine-M (0.4 mg/kg) all Hsps examined were significantly increased in at least one of the time points studied (24, 48, and 72 hr). Treatment with Oxotremorine-M significantly increased the level of phosphorylated HSF1 in all time points studied, without change of protein levels. Similar pattern of Hsps changes was obtained following chronic Oxotremorine-M treatment (0.2 mg/kg) for 5 days. Surprisingly, following chronic treatment for 10 days no changes were observed in Hsps. The muscarinic acetylcholine receptor antagonist scopolamine (1 mg/kg) was able to completely block Oxotremorine-M effects on Hsps. In conclusion, considering the function of Hsps in protecting neuronal cells from deleterious proteotoxic stress, for example, protein mis-folding and aggregation, the results obtained indicate that muscarinic acetylcholine receptor activation may have implications in potential treatment of neurodegenerative disorders linked to protein aggregation, such as Alzheimer disease.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Receptores Muscarínicos/metabolismo , Animales , Factores de Transcripción del Choque Térmico/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Enfermedades Neurodegenerativas/metabolismo , Proyección Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Escopolamina/farmacología , Transducción de Señal/efectos de los fármacos
11.
Auton Neurosci ; 210: 55-64, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29305058

RESUMEN

Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt¯). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt¯ tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol and to high KCl were reduced, demonstrating a widespread impairment of contractility. L-NAME was not able in the HGprt¯ tissues to restore the large amplitude contractile activity typical of control. In HGprt¯ colon, a reduced expression of dopaminergic D1 receptor was observed together with the loss of its tonic inhibitory activity present in control-mice. The analysis of inflammatory and oxidative stress in colonic tissue of HGprt¯ mice revealed a significant increase of lipid peroxidation associated with over production of oxygen free radicals. In conclusion, HGprt deficiency in mice is associated with a decrease in colon contractility, not dependent upon reduction of acetylcholine release from the myenteric plexus or hyperactivity of inhibitory signalling. By contrast the increased levels of oxidative stress could partially explain the reduced colon motility in HGprt¯ mice. Colonic dysmotility observed in HGprt¯ mice may mimic the gastrointestinal dysfunctions symptoms of human syndrome, providing a useful animal model to elucidate the pathophysiology of this problem in the LND.


Asunto(s)
Motilidad Gastrointestinal/genética , Regulación de la Expresión Génica/genética , Síndrome de Lesch-Nyhan/complicaciones , Músculo Liso/fisiopatología , Animales , Atropina/farmacología , Benzazepinas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Carbacol/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Inhibidores Enzimáticos/farmacología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/genética , Cara , Motilidad Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipoxantina Fosforribosiltransferasa/deficiencia , Hipoxantina Fosforribosiltransferasa/metabolismo , Técnicas In Vitro , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/patología , Síndrome de Lesch-Nyhan/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Neurotransmisores/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
12.
Purinergic Signal ; 13(4): 429-442, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28616713

RESUMEN

Epithelial to mesenchymal transition (EMT) occurs during embryogenesis or under pathological conditions such as hypoxia, injury, chronic inflammation, or tissue fibrosis. In renal tubular epithelial cells (MDCK), TGF-ß1 induces EMT by reducing or increasing epithelial or mesenchymal marker expression, respectively. In this study, we confirmed that the cAMP analogues, 8-CPT-cAMP or N6-Ph-cAMP, inhibited the TGF-ß1-driven overexpression of the mesenchymal markers ZEB-1, Slug, Fibronectin, and α-SMA. Furthermore, we showed that A1, A2A, P2Y1, P2Y11, and P2X7 purine receptor agonists modulated the TGF-ß1-induced EMT through the involvement of PKA and/or MAPK/ERK signaling. The stimulation of A2A receptor reduced the overexpression of the EMT-related markers, mainly through the cAMP-dependent PKA pathway, as confirmed by cell pre-treatment with Myr-PKI. Both A1 and P2Y1 receptor stimulation exacerbated the TGF-ß1-driven effects, which were reduced by cell pre-treatment with the MAPK inhibitor PD98059, according to the increased ERK1/2 phosphorylation upon receptor activation. The effects induced by P2Y11 receptor activation were oppositely modulated by PKA or MAPK inhibition, in line with the dual nature of the Gs- and Gq-coupled receptor. Differently, P2X7 receptor induced, per se, similar and not additive effects compared to TGF-ß1, after prolonged cell exposure to BzATP. These results suggest a putative role of purine receptors as target for anti-fibrotic agents.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Perros , Fibrosis/metabolismo , Células de Riñón Canino Madin Darby , Factor de Crecimiento Transformador beta1/metabolismo
13.
Psychopharmacology (Berl) ; 234(4): 559-573, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27957715

RESUMEN

RATIONALE: In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. OBJECTIVES: Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. METHODS: The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. RESULTS: Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.


Asunto(s)
Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hipocampo/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Oxotremorina/farmacología , Corteza Prefrontal/efectos de los fármacos , Estrés Psicológico/metabolismo , Animales , Ansiedad/metabolismo , Hipocampo/metabolismo , Masculino , Agonistas Muscarínicos/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxotremorina/uso terapéutico , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar
14.
J Cell Physiol ; 232(8): 2044-2052, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27576008

RESUMEN

In the mdx mice model of Duchenne Muscular Dystrophy (DMD), mild endurance exercise training positively affected limb skeletal muscles, whereas few and controversial data exist on the effects of training on the diaphragm. The diaphragm was examined in mdx (C57BL/10ScSn-Dmdmdx) and wild-type (WT, C57BL/10ScSc) mice under sedentary conditions (mdx-SD, WT-SD) and during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days (training: 5 d/wk for 6 weeks), diaphragm muscle morphology and Cx39 protein were assessed. In addition, tissue levels of the chaperonins Hsp60 and Hsp70 and the p65 subunit of nuclear factor-kB (NF-kB) were measured in diaphragm, gastrocnemius, and quadriceps in each experimental group at all time points. Although morphological analysis showed unchanged total area of necrosis/regeneration in the diaphragm after training, there was a trend for larger areas of regeneration than necrosis in the diaphragm of mdx-EX compared to mdx-SD mice. However, the levels of Cx39, a protein associated with active regeneration in damaged muscle, were similar in the diaphragm of mdx-EX and mdx-SD mice. Hsp60 significantly decreased at 45 days in the diaphragm, but not in limb muscles, in both trained and sedentary mdx compared to WT mice. In limb muscles, but not in the diaphragm, Hsp70 and NF-kB p65 levels were increased in mdx mice irrespective of training at 30 and 45 days. Therefore, the diaphragm of mdx mice showed little inflammatory and stress responses over time, and appeared hardly affected by mild endurance training. J. Cell. Physiol. 232: 2044-2052, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diafragma/fisiopatología , Terapia por Ejercicio/métodos , Fuerza Muscular , Distrofia Muscular de Duchenne/terapia , Animales , Chaperonina 60/metabolismo , Conexinas/metabolismo , Diafragma/metabolismo , Diafragma/patología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Ratones Endogámicos mdx , Proteínas Mitocondriales/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Necrosis , Fenotipo , Resistencia Física , Factores de Tiempo , Factor de Transcripción ReIA/metabolismo
15.
Front Pharmacol ; 7: 158, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27378923

RESUMEN

Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial functional interplay between GBPs effects and adenosine receptors activity has been recently described, thus triggering the hypothesis that GBPs mechanism of action might somehow involve adenosine receptors. Here, we review recent data describing the GBPs role in the brain. We focus on the involvement of GBPs regulating neuronal plasticity, and on the new hypothesis based on putative GBPs receptors. Overall, we expect to shed some light on the GBPs world since although these molecules might represent excellent candidates for certain neurological diseases management, the lack of putative GBPs receptors precludes any high throughput screening intent for the search of effective GBPs-based drugs.

17.
J Cell Physiol ; 231(10): 2218-23, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26868633

RESUMEN

Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r = -0.66, P = 0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients. J. Cell. Physiol. 231: 2218-2223, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Bronquios/metabolismo , Distrofina/metabolismo , Epitelio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Distrofina/deficiencia , Distrofina/genética , Expresión Génica/fisiología , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Regeneración
18.
Eur J Neurosci ; 43(5): 626-39, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26741810

RESUMEN

Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP.


Asunto(s)
Lesiones Encefálicas/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Lesiones Encefálicas/etiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Muerte Celular , Células Cultivadas , Proteínas Inhibidoras de la Apoptosis/genética , Ácido Kaínico/toxicidad , Ratones , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
19.
Cell Mol Life Sci ; 73(7): 1365-79, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26616211

RESUMEN

Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.


Asunto(s)
Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Neuronas Dopaminérgicas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Fármacos Neuroprotectores/farmacología , Neurturina/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/uso terapéutico , Respuesta de Proteína Desplegada , alfa-Sinucleína/inmunología , alfa-Sinucleína/farmacología , alfa-Sinucleína/uso terapéutico
20.
Biosci Rep ; 35(3)2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-26182375

RESUMEN

In our recent study was shown a significant recovery of damaged skeletal muscle of mice with X-linked muscular dystrophy (mdx) following low-intensity endurance exercise, probably by reducing the degeneration of dystrophic muscle. Consequently, in the present work, we aimed to identify proteins involved in the observed reduction in degenerating fibres. To this end, we used proteomic analysis to evaluate changes in the protein profile of quadriceps dystrophic muscles of exercised compared with sedentary mdx mice. Four protein spots were found to be significantly changed and were identified as three isoforms of carbonic anhydrase 3 (CA3) and superoxide dismutase [Cu-Zn] (SODC). Protein levels of CA3 isoforms were significantly up-regulated in quadriceps of sedentary mdx mice and were completely restored to wild-type (WT) mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Protein levels of SODC were down-regulated in quadriceps of sedentary mdx mice and were significantly restored to WT mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Western blot data were in agreement with those obtained using proteomic analysis and revealed the presence of one more CA3 isoform that was significantly changed. Based on data found in the present study, it seems that low-intensity endurance exercise may in part contribute to reduce cell degeneration process in mdx muscles, by counteracting oxidative stress.


Asunto(s)
Proteínas Musculares/metabolismo , Resistencia Física/fisiología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/fisiopatología , Animales , Western Blotting , Anhidrasa Carbónica III/metabolismo , Electroforesis en Gel Bidimensional/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/fisiopatología , Proteómica/métodos , Reproducibilidad de los Resultados , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA