Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(5): 2289-2294, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164662

RESUMEN

Control of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP. We demonstrate that the phase transformation is thermally activated by laser heating up to a threshold of 800 °C (for NPs with a size of hundreds of nm), leading to the associated changes in the light scattering and color of the NP. The results thereby pave the way for the implementation of optical sensors triggered by a high temperature at the nanometer scale via NPs based on metal alloys.

2.
Nanoscale Horiz ; 8(5): 568-602, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36928662

RESUMEN

Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology. In this article we briefly outline some of the most recent, mostly within the past two years, innovations in well-established fabrication technologies, including oxygen plasma-based methods, self-assembly and electric-field assisted growth, electrospinning and thermal oxidation approaches. Recent progress in several key types of leading-edge applications of CuO nanostructures, mostly for energy, sensing and catalysis, is also reviewed. Besides, we briefly outline and stress novel insights into the effect of various process parameters on the growth of low-dimensional copper oxide nanostructures, such as the heating rate, oxygen flow, and roughness of the substrates. These insights play a key role in establishing links between the structure, properties and performance of the nanomaterials, as well as finding the cost-and-benefit balance for techniques that are capable of fabricating low-dimensional CuO with the desired properties and facilitating their integration into more intricate material architectures and devices without the loss of original properties and function.

3.
Inorg Chem ; 61(35): 13992-14003, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36001002

RESUMEN

Metal-organic frameworks (MOFs) have been recently explored as crystalline solids for conversion into amorphous phases demonstrating non-specific mechanical, catalytic, and optical properties. The real-time control of such structural transformations and their outcomes still remain a challenge. Here, we use in situ high-resolution transmission electron microscopy with 0.01 s time resolution to explore non-thermal (electron induced) amorphization of a MOF single crystal, followed by transformation into an amorphous nanomaterial. By comparing a series of M-BTC (M: Fe3+, Co3+, Co2+, Ni2+, and Cu2+; BTC: 1,3,5-benzentricarboxylic acid), we demonstrate that the topology of a metal cluster of the parent MOFs determines the rate of formation and the chemistry of the resulting phases containing an intact ligand and metal or metal oxide nanoparticles. Confocal Raman and photoluminescence spectroscopies further confirm the integrity of the BTC ligand and coordination bond breaking, while high-resolution imaging with chemical and structural analysis over time allows for tracking the dynamics of solid-to-solid transformations. The revealed relationship between the initial and resulting structures and the stability of the obtained phase and its photoluminescence over time contribute to the design of new amorphous MOF-based optical nanomaterials.

4.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885986

RESUMEN

Time-resolved optical emission spectroscopy of nanosecond-pulsed discharges ignited in liquid nitrogen between two bismuth electrodes is used to determine the main discharge parameters (electron temperature, electron density and optical thickness). Nineteen lines belonging to the Bi I system and seven to the Bi II system could be recorded by directly plunging the optical fibre into the liquid in close vicinity to the discharge. The lack of data for the Stark parameters to evaluate the broadening of the Bi I lines was solved by taking advantage of the time-resolved information supported by each line to determine them. The electron density was found to decrease exponentially from 6.5 ± 1.5 × 1016 cm-3 200 ns after ignition to 1.0 ± 0.5 × 1016 cm-3 after 1050 ns. The electron temperature was found to be 0.35 eV, close to the value given by Saha's equation.

5.
Nanoscale ; 11(27): 13161, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31243404

RESUMEN

Correction for 'Laser printing of optically resonant hollow crystalline carbon nanostructures from 1D and 2D metal-organic frameworks' by Leila R. Mingabudinova et al., Nanoscale, 2019, 11, 10155-10159.

6.
Nanoscale ; 11(21): 10155-10159, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31038502

RESUMEN

Using a hybrid approach involving a slow diffusion method to synthesize 1D and 2D MOFs followed by their treatment with femtosecond infrared laser radiation, we generated 100-600 nm well-defined hollow spheres and hemispheres of graphite. This ultra-fast technique extends the library of shapes of crystalline MOF derivatives appropriate for all-dielectric nanophotonics.

7.
Chemphyschem ; 20(5): 719-726, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629795

RESUMEN

Here, we study the stress-induced self-organization of Mg2+ and Ni2+ cations in the crystal structure of multiwalled (Mg1-x ,Nix )3 Si2 O5 (OH)4 phyllosilicate nanoscrolls. The phyllosilicate layer strives to compensate size and surface energy difference between the metal oxide and silica sheets by curling. But as soon as the layer grows, the scrolling mechanism becomes a spent force. An energy model proposes secondary compensation of strain: two cations distribute along the nanoscroll spiral in accordance with preferable radii of curvature. To reveal this, we study synthetic (Mg1-x ,Nix )3 Si2 O5 (OH)4 nanoscrolls by the scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDS) technique. For a number of scrolls, we have found indeed a change of Ni concentration with increase in distance from the nanoscroll central axis. The concentration gradient, according to our estimates, can reach 50 at.% over 25 nm of the wall thickness.

8.
Phys Chem Chem Phys ; 21(3): 1183-1189, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30548038

RESUMEN

Sonoluminescence (SL) spectra of a very dry [BEPip][NTf2] ionic liquid were measured in the first minutes of sonication under Ar. The intense sonoluminescence allowed us to monitor the time-evolution of the SL spectra. Several molecular emissions were observed. Rovibronic temperatures of C2 and CN were determined giving vibrational temperatures of 5800 ± 500 K and 6000 ± 500 K and rotational temperatures (i.e. translational or gas temperatures) of 4000 ± 500 K. These temperatures stay remarkably constant during the sonolysis, while SL spectra undergo strong changes that illustrate the very fast evolution of the plasma during the first minutes of sonication. The expected strong decrease in the plasma electron energy also reflects in the evolution of the populations of CH electronically excited states. The physical meaning of temperatures derived from molecular emissions in SL spectra is discussed.

9.
Adv Mater ; 30(50): e1802201, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30302826

RESUMEN

Spacecraft are expected to traverse enormous distances over long periods of time without an opportunity for maintenance, re-fueling, or repair, and, for interplanetary probes, no on-board crew to actively control the spacecraft configuration or flight path. Nevertheless, space technology has reached the stage when mining of space resources, space travel, and even colonization of other celestial bodies such as Mars and the Moon are being seriously considered. These ambitious aims call for spacecraft capable of self-controlled, self-adapting, and self-healing behavior. It is a tough challenge to address using traditional materials and approaches for their assembly. True interplanetary advances may only be attained using novel self-assembled and self-healing materials, which would allow for realization of next-generation spacecraft, where the concepts of adaptation and healing are at the core of every level of spacecraft design. Herein, recent achievements are captured and future directions in materials-driven development of space technology outlined.

10.
Phys Chem Chem Phys ; 20(14): 9198-9210, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29560996

RESUMEN

The understanding of plasma-liquid interactions is of major importance, not only in physical chemistry, chemical engineering and polymer science, but in biomedicine as well as to better control the biological processes induced on/in biological samples by Cold Atmospheric Plasmas (CAPs). Moreover, plasma-air interactions have to be particularly considered since these CAPs propagate in the ambient air. Herein, we developed a helium-based CAP setup equipped with a shielding-gas device, which allows the control of plasma-air interactions. Thanks to this device, we obtained specific diffuse CAPs, with the ability to propagate along several centimetres in the ambient air at atmospheric pressure. Optical Emission Spectroscopy (OES) measurements were performed on these CAPs during their interaction with a liquid medium (phosphate-buffered saline PBS 10 mM, pH 7.4) giving valuable information about the induced chemistry as a function of the shielding gas composition (variable O2/(O2 + N2) ratio). Several excited species were detected including N2+(First Negative System, FNS), N2(Second Positive System, SPS) and HO˙ radical. The ratios between nitrogen/oxygen excited species strongly depend on the O2/(O2 + N2) ratio. The liquid chemistry developed after CAP treatment was investigated by combining electrochemical and UV-visible absorption spectroscopy methods. We detected and quantified stable oxygen and nitrogen species (H2O2, NO2-, NO3-) along with Reactive Nitrogen Species (RNS) such as the peroxynitrite anion ONOO-. It appears that the RNS/ROS (Reactive Oxygen Species) ratio in the treated liquid depends also on the shielding gas composition. Eventually, the composition of the surrounding environment of CAPs seems to be crucial for the induced plasma chemistry and consequently, for the liquid chemistry. All these results demonstrate clearly that for physical, chemical and biomedical applications, which are usually achieved in ambient air environments, it is necessary to realize an effective control of plasma-air interactions.

11.
Phys Chem Chem Phys ; 19(38): 26272-26279, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28933497

RESUMEN

In this work, the sonoluminescence of NH radicals has been evaluated as a new spectroscopic probe for the nonequilibrium plasma produced by multibubble cavitation in liquids. The experiments were performed in aqueous ammonia solutions subjected to power ultrasound at low and high frequencies and under two different rare gases (Ar and Xe). Sonoluminescence (SL) spectroscopy focuses on the emission of the two present systems: NH (A3Π-X3Σ-) and OH (A2Σ+-X2Π). Both spectroscopic systems indicate the absence of thermal equilibrium during bubble collapse (Tv > Tr) irrespective of the saturating gas. When Ar is used as the saturating gas, these emissions can be fitted using Specair software and the corresponding rovibronic temperatures are derived. Both species indicate a net increase in vibrational temperatures with the US frequency. In Xe, the SL spectra exhibit OH (C2Σ+-A2Σ+) and NH (c1Π-a1Δ) emission bands indicating a higher electron temperature compared to Ar. However, in Xe, the SL spectra cannot be satisfactorily fitted because of significant line broadening. The estimation of the intrabubble pressure via SL simulation using Specair software is discussed. Monitoring of the sonochemical activity indicates the formation of H2 and N2H4, while no H2O2 accumulates under these conditions. In the presence of Xe, NO is also formed as a sonolysis product. The appearance of new possible reaction pathways under Xe is made possible by the higher plasma electron density and correlates with SL data.

12.
Langmuir ; 32(5): 1405-9, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26752107

RESUMEN

Controlling microdischarges in plasma electrolytic oxidation is of great importance in order to optimize coating quality. The present study highlights the relationship between the polarity at which breakdown occurs and the electrolyte pH as compared with the isoelectric point (IEP). It is found that working at a pH higher than the IEP of the grown oxide prevents the buildup of detrimental cathodic discharges. The addition of phosphates results in a shift in the IEP to a lower value and therefore promotes anodic discharges at the expense of cathodic ones.

13.
ACS Appl Mater Interfaces ; 7(26): 14317-27, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26069994

RESUMEN

A continuous-flow plasma process working at atmospheric pressure is developed to enhance the adhesion between a rubber compound and a zinc-plated steel monofilament, with the long-term objective to find a potential alternative to the electrolytic brass plating process, which is currently used in tire industry. For this purpose, a highly efficient tubular dielectric barrier discharge reactor is built to allow the continuous treatment of "endless" cylindrical substrates. The best treatment conditions found regarding adhesion are Ar/O2 plasma pretreatment, followed by the deposition from dichloromethane of a 75 nm-thick organo-chlorinated plasma polymerized thin film. Ar/O2 pretreatment allows the removal of organic residues, coming from drawing lubricants, and induces external growth of zinc oxide. The plasma layer has to be preferably deposited at low power to conserve sufficient hydrocarbon moieties. Surface analyses reveal the complex chemical mechanism behind the establishment of strong adhesion levels, more than five times higher after the plasma treatment. During the vulcanization step, superficial ZnO reacts with the chlorinated species of the thin film and is converted into porous and granular bump-shaped ZnwOxHyClz nanostructures. Together, rubber additives diffuse through the plasma layer and lead to the formation of zinc sulfide on the substrate surface. Hence, two distinct interfaces, rubber/thin film and thin film/substrate, are established. On the basis of these observations, hypotheses explaining the high bonding strength results are formulated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...