Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184329, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679309

VBIT-4 is a new inhibitor of the oligomerization of VDAC proteins of the outer mitochondrial membrane preventing the development of oxidative stress, mitochondrial dysfunction, and cell death in various pathologies. However, as a VDAC inhibitor, VBIT-4 may itself cause mitochondrial dysfunction in healthy cells. The article examines the effect of VBIT-4 on the functional activity of rat liver mitochondria and cell cultures. We have demonstrated that high concentrations of VBIT-4 (15-30 µM) suppressed mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. VBIT-4 induced depolarization of organelles fueled by substrates of complex I but not complex II of the respiratory chain. VBIT-4 has been found to inhibit the activity of complexes I, III, and IV of the respiratory chain. Molecular docking demonstrated that VBIT-4 interacts with the rotenone-binding site in complex I with similar affinity. 15-30 µM VBIT-4 caused an increase in H2O2 production in mitochondria, decreased the Ca2+ retention capacity, but increased the time of Ca2+-dependent mitochondrial swelling. We have found that the incubation of breast adenocarcinoma (MCF-7) with 30 µM VBIT-4 for 48 h led to the decrease of the mitochondrial membrane potential, an increase in ROS production and death of MCF-7 cells. The mechanism of action of VBIT-4 on mitochondria and cells is discussed.


Cell Survival , Mitochondria, Liver , Animals , Humans , Rats , Cell Survival/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Membrane Potential, Mitochondrial/drug effects , MCF-7 Cells , Molecular Docking Simulation , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Calcium/metabolism , Voltage-Dependent Anion Channels/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Male
2.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article En | MEDLINE | ID: mdl-38069154

Amyotrophic lateral sclerosis (ALS) is a fatal multisystem disease characterized by progressive death of motor neurons, loss of muscle mass, and impaired energy metabolism. More than 40 genes are now known to be associated with ALS, which together account for the majority of familial forms of ALS and only 10% of sporadic ALS cases. To date, there is no consensus on the pathogenesis of ALS, which makes it difficult to develop effective therapy. Accumulating evidence indicates that mitochondria, which play an important role in cellular homeostasis, are the earliest targets in ALS, and abnormalities in their structure and functions contribute to the development of bioenergetic stress and disease progression. Mitochondria are known to be highly dynamic organelles, and their stability is maintained through a number of key regulatory pathways. Mitochondrial homeostasis is dynamically regulated via mitochondrial biogenesis, clearance, fission/fusion, and trafficking; however, the processes providing "quality control" and distribution of the organelles are prone to dysregulation in ALS. Here, we systematically summarized changes in mitochondrial turnover, dynamics, calcium homeostasis, and alterations in mitochondrial transport and functions to provide in-depth insights into disease progression pathways, which may have a significant impact on current symptomatic therapies and personalized treatment programs for patients with ALS.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/metabolism , Mitochondria/metabolism , Motor Neurons/metabolism , Energy Metabolism , Disease Progression , Superoxide Dismutase-1/metabolism
3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article En | MEDLINE | ID: mdl-38139129

The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.


Cardiomyopathies , Mitochondria, Heart , Rats , Animals , Isoproterenol/adverse effects , Mitochondria, Heart/metabolism , Uridine/pharmacology , Uridine/metabolism , Reactive Oxygen Species/metabolism , Cardiomyopathies/metabolism , Potassium/metabolism , Adenosine Triphosphate/metabolism
4.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article En | MEDLINE | ID: mdl-37762607

Using a model of Parkinson's disease (PD) induced by the bilateral injection of neurotoxin 6-hydroxydopamine (6-OHDA) into rat brain substantia nigra (SN), we showed uridine to exert a protective effect associated with activation of the mitochondrial ATP-dependent potassium (mitoK-ATP) channel. Injection of 4 µg neurotoxin evoked a 70% decrease in the time the experimental animal spent on the rod in the RotaRod test, an increase in the amount of lipid peroxides in blood serum and cerebral-cortex mitochondria and the rate of reactive oxygen species formation, and a decrease in Ca2+ retention in mitochondria. Herewith, lymphocytes featured an increase in the activity of lactate dehydrogenase, a cytosolic enzyme of glycolysis, without changes in succinate-dehydrogenase activity. Structural changes occurring in the SN and striatum manifested themselves in the destruction of mitochondria, degeneration of neurons and synapses, and stratification of myelin sheaths in them. Subcutaneous injections of 30 µg/kg uridine for 22 days restored the neurotoxin-induced changes in these parameters to levels close to the control. 5-Hydroxydecanoate (5 mg/kg), a specific mitoK-ATP channel inhibitor, eliminated the beneficial effect of uridine for almost all characteristics tested, indicating the involvement of the mitoK-ATP channel in the protective effect of uridine. The mechanism of the protective effect of uridine and its therapeutic applications for the prevention and treatment of PD are discussed.


Neurotoxins , Parkinson Disease , Animals , Rats , Oxidopamine , Uridine/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Brain , Adenosine Triphosphate
5.
Int J Mol Sci ; 24(15)2023 Aug 06.
Article En | MEDLINE | ID: mdl-37569860

The effect of hyperglycemia on the morphology of individual mitochondria and the state of the mitochondrial network in primary mouse lung microvascular endotheliocytes and human dermal fibroblasts has been investigated. The cells were exposed to high (30 mM) and low (5.5 mM) glucose concentrations for 36 h. In primary endotheliocytes, hyperglycemic stress induced a significant increase in the number of mitochondria and a decrease in the interconnectivity value of the mitochondrial network, which was associated with a decrease in the mean size of the mitochondria. Analysis of the mRNA level of the genes of proteins responsible for mitochondrial biogenesis and mitophagy revealed an increase in the expression level of the Ppargc1a, Pink1, and Parkin genes, indicating stimulated mitochondrial turnover in endotheliocytes under high glucose conditions. In primary fibroblasts, hyperglycemia caused a decrease in the number of mitochondria and an increase in their size. As a result, the mitochondria exhibited higher values for elongation. In parallel, the mRNA level of the Ppargc1a and Mfn2 genes in fibroblasts exposed to hyperglycemia was reduced. These findings indicate that high glucose concentrations induced cell-specific morphological rearrangements of individual mitochondria and the mitochondrial network, which may be relevant during mitochondria-targeted drug testing and therapy for hyperglycemic and diabetic conditions.

6.
Antioxidants (Basel) ; 12(7)2023 Jul 20.
Article En | MEDLINE | ID: mdl-37507997

Prolonged hyperglycemia related to diabetes and its complications leads to multiple cellular disorders, the central one being the dysfunction of mitochondria. Voltage-dependent anion channels (VDAC) of the outer mitochondrial membrane control the metabolic, ionic, and energy cross-talk between mitochondria and the rest of the cell and serve as the master regulators of mitochondrial functions. Here, we have investigated the effect of pharmacological suppression of VDAC1 by the newly developed inhibitor of its oligomerization, VBIT-4, in the primary culture of mouse lung endotheliocytes and downregulated expression of VDAC1 in human skin fibroblasts on the progression of mitochondrial dysfunction upon hyperglycemic stress. The cells were grown in high-glucose media (30 mM) for 36 h. In response to hyperglycemia, the mRNA level of VDAC1 increased in endotheliocytes and decreased in human skin fibroblasts. Hyperglycemia induced overproduction of mitochondrial ROS, an increase in the susceptibility of the organelles to mitochondrial permeability transition (MPT) pore opening and a drop in mitochondrial membrane potential, which was accompanied by a decrease in cell viability in both cultures. Treatment of endotheliocytes with 5 µM VBIT-4 abolished the hyperglycemia-induced increase in susceptibility to spontaneous opening of the MPT pore and ROS generation in mitochondria. Silencing of VDAC1 expression in human skin fibroblasts exposed to high glucose led to a less pronounced manifestation of all the signs of damage to mitochondria. Our data identify a mitochondria-related response to pharmacological and genetic suppression of VDAC activity in vascular cells in hyperglycemia and suggest the potential therapeutic value of targeting these channels for the treatment of diabetic vasculopathies.

7.
Membranes (Basel) ; 13(6)2023 May 30.
Article En | MEDLINE | ID: mdl-37367767

The present work shows the cytotoxic effects of novel conjugates of ursolic, oleanolic, maslinic, and corosolic acids with the penetrating cation F16 on cancer cells (lung adenocarcinoma A549 and H1299, breast cancer cell lines MCF-7 and BT474) and non-tumor human fibroblasts. It has been established that the conjugates have a significantly enhanced toxicity against tumor-derived cells compared to native acids and also demonstrate selectivity to some cancer cells. The toxic effect of the conjugates is shown to be due to ROS hyperproduction in cells, induced by the effect on mitochondria. The conjugates caused dysfunction of isolated rat liver mitochondria and, in particular, a decrease in the efficiency of oxidative phosphorylation, a decrease in the membrane potential, and also an overproduction of ROS by organelles. The paper discusses how the membranotropic- and mitochondria-targeted effects of the conjugates may be related to their toxic effects.

8.
Biochemistry (Mosc) ; 88(2): 189-201, 2023 Feb.
Article En | MEDLINE | ID: mdl-37072326

Dystrophin-deficient muscular dystrophy (Duchenne dystrophy) is characterized by impaired ion homeostasis, in which mitochondria play an important role. In the present work, using a model of dystrophin-deficient mdx mice, we revealed decrease in the efficiency of potassium ion transport and total content of this ion in the heart mitochondria. We evaluated the effect of chronic administration of the benzimidazole derivative NS1619, which is an activator of the large-conductance Ca2+-dependent K+ channel (mitoBKCa), on the structure and function of organelles and the state of the heart muscle. It was shown that NS1619 improves K+ transport and increases content of the ion in the heart mitochondria of mdx mice, but this is not associated with the changes in the level of mitoBKCa protein and expression of the gene encoding this protein. The effect of NS1619 was accompanied by the decrease in the intensity of oxidative stress, assessed by the level of lipid peroxidation products (MDA products), and normalization of the mitochondrial ultrastructure in the heart of mdx mice. In addition, we found positive changes in the tissue manifested by the decrease in the level of fibrosis in the heart of dystrophin-deficient animals treated with NS1619. It was noted that NS1619 had no significant effect on the structure and function of heart mitochondria in the wild-type animals. The paper discusses mechanisms of influence of NS1619 on the function of mouse heart mitochondria in Duchenne muscular dystrophy and prospects for applying this approach to correct pathology.


Calcium , Dystrophin , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Calcium/metabolism , Mice, Inbred mdx , Benzimidazoles/pharmacology , Benzimidazoles/metabolism , Mitochondria, Heart/metabolism
9.
Biomedicines ; 10(11)2022 Nov 11.
Article En | MEDLINE | ID: mdl-36428470

The present study evaluates the cytotoxicity of a previously synthesized conjugate of betulinic acid (BA) with the penetrating cation F16 on breast adenocarcinoma (MCF-7) and human fibroblast (HF) cell lines, and also shows the mechanism underlying its membranotropic action. It was confirmed that the conjugate exhibits higher cytotoxicity compared to native BA at low doses also blocking the proliferation of both cell lines and causing cell cycle arrest in the G0/G1 phase. We show that the conjugate indeed has a high potential for accumulation in mitochondria, being visualized in these organelles, which is most pronounced in cancer cells. The effect of the conjugate was observed to be accompanied by ROS hyperproduction in both cancerous and healthy cells, despite the lower base level of ROS in the latter. Along with this, using artificial liposomes, we determined that the conjugate is able to influence the phase state of lipid membranes, make them more fluid, and induce nonspecific permeabilization contributing to the overall cytotoxicity of the tested agent. We conclude that the studied BA-F16 conjugate does not have significant selective cytotoxicity, at least against the studied breast cancer cell line MCF-7.

10.
Pharmaceutics ; 14(11)2022 Oct 29.
Article En | MEDLINE | ID: mdl-36365155

Duchenne muscular dystrophy (DMD) is a progressive hereditary disease caused by the absence of the dystrophin protein. This is secondarily accompanied by a dysregulation of ion homeostasis, in which mitochondria play an important role. In the present work, we show that mitochondrial dysfunction in the skeletal muscles of dystrophin-deficient mdx mice is accompanied by a reduction in K+ transport and a decrease in its content in the matrix. This is associated with a decrease in the expression of the mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) in the muscles of mdx mice, which play an important role in cytoprotection. We observed that the BKCa activator NS1619 caused a normalization of mitoBKCa expression and potassium homeostasis in the muscle mitochondria of these animals, which was accompanied by an increase in the calcium retention capacity, mitigation of oxidative stress, and improvement in mitochondrial ultrastructure. This effect of NS1619 contributed to the reduction of degeneration/regeneration cycles and fibrosis in the skeletal muscles of mdx mice as well as a normalization of sarcomere size, but had no effect on the leakage of muscle enzymes and muscle strength loss. In the case of wild-type mice, we noted the negative effect of NS1619 manifested in the inhibition of the functional activity of mitochondria and disruption of their structure, which, however, did not significantly affect the state of the skeletal muscles of the animals. This article discusses the role of mitoBKCa in the development of DMD and the prospects of the approach associated with the correction of its function in treatments of this secondary channelopathy.

11.
Biochemistry (Mosc) ; 87(7): 605-616, 2022 Jul.
Article En | MEDLINE | ID: mdl-36154883

Effect of alisporivir (a mitochondrial permeability transition pore inhibitor) on the development of mitochondrial dysfunction under hyperglycemic conditions in the primary culture of mouse lung endothelial cells was investigated in this work. We demonstrated that hyperglycemia (30 mM glucose for 24 h) leads to the decrease in viability of the pulmonary endotheliocytes, causes mitochondrial dysfunction manifested by the drop in membrane potential and increase in superoxide anion generation as well as facilitates opening of the mitochondrial permeability transition pore (MPT pore). Incubation of endothelial cells with 5 µM alisporivir under hyperglycemic conditions leads to the increase in cell viability, restoration of the membrane potential level and of the MPT pore opening activity to control values. Hyperglycemia causes increased mitophagy in the lung endothelial cells: we observed increase in the degree of colocalization of mitochondria and lysosomes and upregulation of the Parkin gene expression. Alisporivir restores these parameters back to the levels observed in the control cells. Hyperglycemia results in the increase in the expression of the Drp1 gene in endotheliocytes responsible for synthesis of the protein involved in the process of mitochondria fission. Alisporivir does not significantly alter expression of the genes. The paper discusses mechanisms of the effect of alisporivir on mitochondrial dysfunction in murine pulmonary endotheliocytes under conditions of hyperglycemia.


Hyperglycemia , Mitochondrial Permeability Transition Pore , Animals , Cyclosporine , Endothelial Cells/metabolism , Glucose/metabolism , Hyperglycemia/metabolism , Lung/metabolism , Mice , Mitochondria/metabolism , Superoxides/metabolism , Ubiquitin-Protein Ligases/genetics
12.
Membranes (Basel) ; 12(9)2022 Sep 08.
Article En | MEDLINE | ID: mdl-36135884

This paper demonstrates the membranotropic effect of modified levopimaric acid diene adducts on liver mitochondria and lecithin liposomes. We found that the derivatives dose-dependently reduced the efficiency of oxidative phosphorylation of mitochondria due to inhibition of the activity of complexes III and IV of the respiratory chain and protonophore action. This was accompanied by a decrease in the membrane potential in the case of organelle energization both by glutamate/malate (complex I substrates) and succinate (complex II substrate). Compounds 1 and 2 reduced the generation of H2O2 by mitochondria, while compound 3 exhibited a pronounced antioxidant effect on glutamate/malate-driven respiration and, on the other hand, caused ROS overproduction when organelles are energized with succinate. All tested compounds exhibited surface-active properties, reducing the fluidity of mitochondrial membranes and contributing to nonspecific permeabilization of the lipid bilayer of mitochondrial membranes and swelling of the organelles. Modified levopimaric acid diene adducts also induced nonspecific permeabilization of unilamellar lecithin liposomes, which confirmed their membranotropic properties. We discuss the mechanisms of action of the tested compounds on the mitochondrial OXPHOS system and the state of the lipid bilayer of membranes, as well as the prospects for the use of new modified levopimaric acid diene adducts in medicine.

13.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article En | MEDLINE | ID: mdl-36142532

Long-term hyperglycemia in diabetes mellitus is associated with complex damage to cardiomyocytes and the development of mitochondrial dysfunction in the myocardium. Uridine, a pyrimidine nucleoside, plays an important role in cellular metabolism and is used to improve cardiac function. Herein, the antidiabetic potential of uridine (30 mg/kg/day for 21 days, i.p.) and its effect on mitochondrial homeostasis in the heart tissue were examined in a high-fat diet-streptozotocin-induced model of diabetes in C57BL/6 mice. We found that chronic administration of uridine to diabetic mice normalized plasma glucose and triglyceride levels and the heart weight/body weight ratio and increased the rate of glucose utilization during the intraperitoneal glucose tolerance test. Analysis of TEM revealed that uridine prevented diabetes-induced ultrastructural abnormalities in mitochondria and sarcomeres in ventricular cardiomyocytes. In diabetic heart tissue, the mRNA level of Ppargc1a decreased and Drp1 and Parkin gene expression increased, suggesting the disturbances of mitochondrial biogenesis, fission, and mitophagy, respectively. Uridine treatment of diabetic mice restored the mRNA level of Ppargc1a and enhanced Pink1 gene expression, which may indicate an increase in the intensity of mitochondrial biogenesis and mitophagy, and as a consequence, mitochondrial turnover. Uridine also reduced oxidative phosphorylation dysfunction and suppressed lipid peroxidation, but it had no significant effect on the impaired calcium retention capacity and potassium transport in the heart mitochondria of diabetic mice. Altogether, these findings suggest that, along with its hypoglycemic effect, uridine has a protective action against diabetes-mediated functional and structural damage to cardiac mitochondria and disruption of mitochondrial quality-control systems in the diabetic heart.


Diabetes Mellitus, Experimental , Animals , Blood Glucose/metabolism , Calcium/metabolism , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Hypoglycemic Agents/adverse effects , Mice , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Potassium/metabolism , Protein Kinases/metabolism , RNA, Messenger/metabolism , Streptozocin/adverse effects , Triglycerides/metabolism , Ubiquitin-Protein Ligases/metabolism , Uridine/pharmacology , Uridine/therapeutic use
14.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article En | MEDLINE | ID: mdl-36142572

Duchenne muscular dystrophy is caused by the loss of functional dystrophin that secondarily causes systemic metabolic impairment in skeletal muscles and cardiomyocytes. The nutraceutical approach is considered as a possible complementary therapy for this pathology. In this work, we have studied the effect of pyrimidine nucleoside uridine (30 mg/kg/day for 28 days, i.p.), which plays an important role in cellular metabolism, on the development of DMD in the skeletal muscles of dystrophin deficient mdx mice, as well as its effect on the mitochondrial dysfunction that accompanies this pathology. We found that chronic uridine administration reduced fibrosis in the skeletal muscles of mdx mice, but it had no effect on the intensity of degeneration/regeneration cycles and inflammation, pseudohypetrophy, and muscle strength of the animals. Analysis of TEM micrographs showed that uridine also had no effect on the impaired mitochondrial ultrastructure of mdx mouse skeletal muscle. The administration of uridine was found to lead to an increase in the expression of the Drp1 and Parkin genes, which may indicate an increase in the intensity of organelle fission and the normalization of mitophagy. Uridine had little effect on OXPHOS dysfunction in mdx mouse mitochondria, and moreover, it was suppressed in the mitochondria of wild type animals. At the same time, uridine restored the transport of potassium ions and reduced the production of reactive oxygen species; however, this had no effect on the impaired calcium retention capacity of mdx mouse mitochondria. The obtained results demonstrate that the used dose of uridine only partially prevents mitochondrial dysfunction in skeletal muscles during Duchenne dystrophy, though it mitigates the development of destructive processes in skeletal muscles.


Muscular Dystrophy, Duchenne , Animals , Calcium/metabolism , Disease Models, Animal , Dystrophin/metabolism , Mice , Mice, Inbred mdx , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Potassium/metabolism , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/metabolism , Uridine/metabolism , Uridine/pharmacology
15.
Membranes (Basel) ; 12(7)2022 Jun 28.
Article En | MEDLINE | ID: mdl-35877870

Mitochondria are capable of synchronized oscillations in many variables, but the underlying mechanisms are still unclear. In this study, we demonstrated that rat liver mitochondria, when exposed to a pulse of Sr2+ ions in the presence of valinomycin (a potassium ionophore) and cyclosporin A (a specific inhibitor of the permeability transition pore complex) under hypotonia, showed prolonged oscillations in K+ and Sr2+ fluxes, membrane potential, pH, matrix volume, rates of oxygen consumption and H2O2 formation. The dynamic changes in the rate of H2O2 production were in a reciprocal relationship with the respiration rate and in a direct relationship with the mitochondrial membrane potential and other indicators studied. The pre-incubation of mitochondria with Ca2+(Sr2+)-dependent phospholipase A2 inhibitors considerably suppressed the accumulation of free fatty acids, including palmitic and stearic acids, and all spontaneous Sr2+-induced cyclic changes. These data suggest that the mechanism of ion efflux from mitochondria is related to the opening of short-living pores, which can be caused by the formation of complexes between Sr2+(Ca2+) and endogenous long-chain saturated fatty acids (mainly, palmitic acid) that accumulate due to the activation of phospholipase A2 by the ions. A possible role for transient palmitate/Ca2+(Sr2+)-induced pores in the maintenance of ion homeostasis and the prevention of calcium overload in mitochondria under pathophysiological conditions is discussed.

16.
Biology (Basel) ; 11(3)2022 Feb 27.
Article En | MEDLINE | ID: mdl-35336754

S-15176 difumarate salt, a derivative of the anti-ischemic metabolic drug trimetazidine, has been intensively studied for its impact on cellular metabolism in animal models of ischemia-reperfusion injury of the liver, heart, spinal cord, and other organs. Despite evidence of some reduction in oxidative damage to cells, the results of therapy with S-15176 have been mostly disappointing, possibly because of the lack of data on its underlying mechanisms. Here, we aimed to investigate in more detail the role of complexes I-IV of the electron transport chain and membrane permeability transition in mitochondrial toxicity associated with S-15176. Using rat thymocyte and liver mitochondria, we demonstrated that: (1) acute exposure to S-15176 (10 to 50 µM) dose-dependently decreased the mitochondrial membrane potential; (2) S-15176 suppressed the ADP-stimulated (State 3) and uncoupled (State 3UDNP) respiration of mitochondria energized with succinate or malate/glutamate, but not ascorbate/TMPD, and increased the resting respiration (State 4) when using all the substrate combinations; (3) S-15176 directly inhibited the activity of the respiratory complex III; (4) low doses of S-15176 diminished the rate of H2O2 production by mitochondria; (5) at concentrations of above 30 µM, S-15176 reduced calcium retention capacity and contributed to mitochondrial membrane permeabilization. Taken together, these findings suggest that S-15176 at tissue concentrations reached in animals can impair mitochondrial function through suppression of the cytochrome bc1 complex and an increase in the nonspecific membrane permeability.

17.
Exp Biol Med (Maywood) ; 247(5): 416-425, 2022 03.
Article En | MEDLINE | ID: mdl-34727745

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer's type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


Alzheimer Disease , Spatial Memory , Administration, Intranasal , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Hippocampus , Humans , Maze Learning , Mice , Mice, Inbred Strains , Mitochondria , Olfactory Bulb/metabolism , Olfactory Bulb/surgery
18.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article En | MEDLINE | ID: mdl-34575944

Mitigation of calcium-dependent destruction of skeletal muscle mitochondria is considered as a promising adjunctive therapy in Duchenne muscular dystrophy (DMD). In this work, we study the effect of intraperitoneal administration of a non-immunosuppressive inhibitor of calcium-dependent mitochondrial permeability transition (MPT) pore alisporivir on the state of skeletal muscles and the functioning of mitochondria in dystrophin-deficient mdx mice. We show that treatment with alisporivir reduces inflammation and improves muscle function in mdx mice. These effects of alisporivir were associated with an improvement in the ultrastructure of mitochondria, normalization of respiration and oxidative phosphorylation, and a decrease in lipid peroxidation, due to suppression of MPT pore opening and an improvement in calcium homeostasis. The action of alisporivir was associated with suppression of the activity of cyclophilin D and a decrease in its expression in skeletal muscles. This was observed in both mdx mice and wild-type animals. At the same time, alisporivir suppressed mitochondrial biogenesis, assessed by the expression of Ppargc1a, and altered the dynamics of organelles, inhibiting both DRP1-mediated fission and MFN2-associated fusion of mitochondria. The article discusses the effects of alisporivir administration and cyclophilin D inhibition on mitochondrial reprogramming and networking in DMD and the consequences of this therapy on skeletal muscle health.


Dynamins/genetics , Dystrophin/genetics , GTP Phosphohydrolases/genetics , Muscular Dystrophy, Duchenne/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animals , Cyclophilins/genetics , Cyclosporine/pharmacology , Gene Expression Regulation/drug effects , Humans , Mice , Mice, Inbred mdx , Mitochondria/drug effects , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/genetics , Mitochondrial Dynamics/drug effects , Mitochondrial Permeability Transition Pore/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology
19.
Biology (Basel) ; 10(9)2021 Aug 28.
Article En | MEDLINE | ID: mdl-34571715

Diabetes mellitus is a systemic metabolic disorder associated with mitochondrial dysfunction, with the mitochondrial permeability transition (MPT) pore opening being considered as one of its possible mechanisms. The effect of alisporivir, a non-immunosuppressive cyclosporin derivative and a selective inhibitor of the MPT pore opening, on the ultrastructure and functions of the heart mitochondria of mice with diabetes mellitus induced by a high-fat diet combined with streptozotocin injections was studied. The treatment of diabetic animals with alisporivir (2.5 mg/kg ip for 20 days) increased the rate of glucose clearance during the glucose tolerance test. The blood glucose level and the indicator of heart rate in alisporivir-treated diabetic mice tended to restore. An electron microscopy analysis showed that alisporivir prevented mitochondrial swelling and ultrastructural alterations in cardiomyocytes of diabetic mice. Alisporivir canceled the diabetes-induced increases in the susceptibility of heart mitochondria to the MPT pore opening and the level of lipid peroxidation products, but it did not affect the decline in mitochondrial oxidative phosphorylation capacity. The mRNA expression levels of Pink1 and Parkin in the heart tissue of alisporivir-treated diabetic mice were elevated, suggesting the stimulation of mitophagy. In parallel, alisporivir decreased the level of mtDNA in the heart tissue. These findings suggest that targeting the MPT pore opening by alisporivir alleviates the development of mitochondrial dysfunction in the diabetic heart. The cardioprotective effect of the drug in diabetes can be mediated by the induction of mitophagy and the inhibition of lipid peroxidation in the organelles.

20.
Biomedicines ; 9(9)2021 Sep 16.
Article En | MEDLINE | ID: mdl-34572419

Supporting mitochondrial function is one of the therapeutic strategies that improve the functioning of skeletal muscle in Duchenne muscular dystrophy (DMD). In this work, we studied the effect of a non-immunosuppressive inhibitor of mitochondrial permeability transition pore (MPTP) alisporivir (5 mg/kg/day), reducing the intensity of the necrotic process and inflammation in skeletal muscles on the cardiac phenotype of dystrophin-deficient mdx mice. We found that the heart mitochondria of mdx mice show an increase in the intensity of oxidative phosphorylation and an increase in the resistance of organelles to the MPT pore opening. Alisporivir had no significant effect on the hyperfunctionalization of the heart mitochondria of mdx mice, and the state of the heart mitochondria of wild-type animals did not affect the dynamics of organelles but significantly suppressed mitochondrial biogenesis and reduced the amount of mtDNA in the heart muscle. Moreover, alisporivir suppressed mitochondrial biogenesis in the heart of wild-type mice. Alisporivir treatment resulted in a decrease in heart weight in mdx mice, which was associated with a significant modification of the transmission of excitation in the heart. The latter was also noted in the case of WT mice treated with alisporivir. The paper discusses the prospects for using alisporivir to correct the function of heart mitochondria in DMD.

...