Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Rep ; 14(1): 18002, 2024 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097642

RESUMEN

Zika virus (ZIKV) infection was first reported in 2015 in Brazil as causing microcephaly and other developmental abnormalities in newborns, leading to the identification of Congenital Zika Syndrome (CZS). Viral infections have been considered an environmental risk factor for neurodevelopmental disorders outcome, such as Autism Spectrum Disorder (ASD). Moreover, not only the infection per se, but maternal immune system activation during pregnancy, has been linked to fetal neurodevelopmental disorders. To understand the impact of ZIKV vertical infection on brain development, we derived induced pluripotent stem cells (iPSC) from Brazilian children born with CZS, some of the patients also being diagnosed with ASD. Comparing iPSC-derived neurons from CZS with a control group, we found lower levels of pre- and postsynaptic proteins and reduced functional synapses by puncta co-localization. Furthermore, neurons and astrocytes derived from the CZS group showed decreased glutamate levels. Additionally, the CZS group exhibited elevated levels of cytokine production, one of which being IL-6, already associated with the ASD phenotype. These preliminary findings suggest that ZIKV vertical infection may cause long-lasting disruptions in brain development during fetal stages, even in the absence of the virus after birth. These disruptions could contribute to neurodevelopmental disorders manifestations such as ASD. Our study contributes with novel knowledge of the CZS outcomes and paves the way for clinical validation and the development of potential interventions to mitigate the impact of ZIKV vertical infection on neurodevelopment.


Asunto(s)
Encéfalo , Células Madre Pluripotentes Inducidas , Transmisión Vertical de Enfermedad Infecciosa , Sinapsis , Infección por el Virus Zika , Virus Zika , Humanos , Infección por el Virus Zika/virología , Infección por el Virus Zika/patología , Femenino , Virus Zika/patogenicidad , Sinapsis/patología , Sinapsis/metabolismo , Encéfalo/virología , Encéfalo/patología , Embarazo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/virología , Neuronas/virología , Neuronas/metabolismo , Neuronas/patología , Masculino , Astrocitos/virología , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias/virología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Complicaciones Infecciosas del Embarazo/virología , Complicaciones Infecciosas del Embarazo/patología , Brasil , Recién Nacido , Trastorno del Espectro Autista/virología , Niño
2.
Adv Neurobiol ; 39: 269-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190079

RESUMEN

Autism spectrum disorder (ASD) comprises a complex neurodevelopmental condition characterized by an impairment in social interaction, involving communication deficits and specific patterns of behaviors, like repetitive behaviors. ASD is clinically diagnosed and usually takes time, typically occurring not before four years of age. Genetic mutations affecting synaptic transmission, such as neuroligin and neurexin, are associated with ASD and contribute to behavioral and cognitive deficits. Recent research highlights the role of astrocytes, the brain's most abundant glial cells, in ASD pathology. Aberrant Ca2+ signaling in astrocytes is linked to behavioral deficits and neuroinflammation. Notably, the cytokine IL-6 overexpression by astrocytes impacts synaptogenesis. Altered neurotransmitter levels, disruptions in the blood-brain barrier, and cytokine dysregulation further contribute to ASD complexity. Understanding these astrocyte-related mechanisms holds promise for identifying ASD subtypes and developing targeted therapies.


Asunto(s)
Astrocitos , Trastorno del Espectro Autista , Neuronas , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Humanos , Astrocitos/metabolismo , Neuronas/metabolismo , Animales , Transmisión Sináptica , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo
3.
Front Public Health ; 12: 1450570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193201

RESUMEN

Infants growing up in low- and middle-income countries are at increased risk of suffering adverse childhood experiences, including exposure to environmental pollution and lack of cognitive stimulation. In this study, we aimed to examine the levels of metals in the human milk of women living in São Paulo City, Brazil, and determine the effects on infants' neurodevelopment. For such, a total of 185 human milk samples were analyzed for arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) using inductively coupled plasma mass spectrometry (ICP-MS). We applied the Bayley scales of infant and toddler development Third Edition (Bayley-III) to assess developmental milestones. In our analysis, we found a mean (standard deviation) concentration of As in human milk equal to 2.76 (4.09) µg L-1, followed by Pb 2.09 (5.36) and Hg 1.96 (6.68). Cd was not detected. We observed that infants exposed to Pb presented language trajectories lower than non-exposed infants (ß = -0.413; 95% CI -0.653, -0.173) after adjustment for infant age, maternal education, socioeconomic status, infant sex, and sample weights. Our results report As, Pb, and Hg contamination in human milk, and that infant exposure to Pb decreased infants' language development. These results evidence maternal-child environmental exposure and its detrimental impact on infants' health.


Asunto(s)
Arsénico , Plomo , Leche Humana , Humanos , Leche Humana/química , Plomo/análisis , Femenino , Estudios Prospectivos , Lactante , Brasil , Masculino , Arsénico/análisis , Cadmio/análisis , Adulto , Desarrollo del Lenguaje , Mercurio/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38408544

RESUMEN

Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.


Asunto(s)
Astrocitos , Trastorno del Espectro Autista , Enfermedades Neuroinflamatorias , Sinapsis , Infección por el Virus Zika , Virus Zika , Infección por el Virus Zika/patología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Infección por el Virus Zika/complicaciones , Trastorno del Espectro Autista/virología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/patología , Humanos , Animales , Ratones , Virus Zika/fisiología , Femenino , Niño , Sinapsis/metabolismo , Sinapsis/patología , Enfermedades Neuroinflamatorias/virología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/etiología , Astrocitos/virología , Astrocitos/metabolismo , Astrocitos/patología , Masculino , Interleucina-6/metabolismo , Interleucina-6/genética , Embarazo , Factores de Riesgo , Células Madre Pluripotentes Inducidas/virología , Células Madre Pluripotentes Inducidas/metabolismo , Brasil/epidemiología , Modelos Animales de Enfermedad , Neurogénesis
5.
Front Cell Dev Biol ; 11: 1203503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519304

RESUMEN

Peripheral nervous system (PNS) sensory alterations are present in several pathologies and syndromes. The use of induced pluripotent stem cell (iPSC) technology is an important strategy to produce sensory neurons in patients who are accomplished in terms of sensory symptoms. The iPSC technology relies on manipulating signaling pathways to resemble what occurs in vivo, and the iPSCs are known to carry a transcriptional memory after reprogramming, which can affect the produced cell. To this date, protocols described for sensory neuron production start using iPSCs derived from skin fibroblasts, which have the same ontogenetic origin as the central nervous system (CNS). Since it is already known that the cells somehow resemble their origin even after cell reprogramming, PNS cells should be produced from cells derived from the neural crest. This work aimed to establish a protocol to differentiate sensory neurons derived from stem cells from human exfoliated deciduous teeth (SHED) with the same embryonic origin as the PNS. SHED-derived iPSCs were produced and submitted to peripheral sensory neuron (PSN) differentiation. Our protocol used the dual-SMAD inhibition method, followed by neuronal differentiation, using artificial neurotrophic factors and molecules produced by human keratinocytes. We successfully established the first protocol for differentiating neural crest and PNS cells from SHED-derived iPSCs, enabling future studies of PNS pathologies.

6.
BMC Psychiatry ; 23(1): 254, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059985

RESUMEN

BACKGROUND: Despite previous studies have recently shown Autism Spectrum Disorders (ASD) as having a strong genetics background, over a minimum environmental background, no study up to date has investigated the interplay between genetics and environment. METHODS: We have collected data regarding Family History (FH) and Environmental Factors (EF) from 2,141 individuals with ASD and their caretakers throughout Brazil, based on an online questionnaire. Most of the ASD individuals were males (81%) and the average age was 02 years minimum for males and females, and the maximum age was 41 years for males and 54 for females. People from all states in Brazil have answered the questionnaire. Genetic inheritance was obtained based on the declared FH of Psychiatric and Neurological diagnosis. As for EF, exposure to risk factors during pregnancy was considered, like infections, diabetes, drugs/chemicals exposure, socioeconomic, and psychological factors. Respondents were invited to answer the questionnaire in lectures given throughout Brazil, and by the social networks of the NGO "The Tooth Fairy Project". A Multiple Correspondence Analysis (MCA) was conducted to search vulnerability dimensions, and a Cluster Analysis was conducted to classify and identify the subgroups. RESULTS: Regarding EF, social and psychological exposures contributed to the first two dimensions. Concerning FH, the first dimension represented psychiatric FH, while the second represented neurological FH. When analyzed together, EF and FH contributed to two new dimensions: 1. psychiatric FH, and 2. a psychosocial component. Using Cluster Analysis, it was not possible to isolate subgroups by genetic vulnerability or environmental exposure. Instead, a gradient of psychiatric FH with similar contributions of EF was observed. CONCLUSION: In this study, it was not possible to isolate groups of patients that correspond to only one component, but rather a continuum with different compositions of genetic and environmental interplay.


Asunto(s)
Trastorno del Espectro Autista , Masculino , Femenino , Humanos , Preescolar , Adulto , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/genética , Factores de Riesgo , Encuestas y Cuestionarios , Brasil
7.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142200

RESUMEN

Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.


Asunto(s)
MicroARNs , Microcefalia , Malformaciones del Sistema Nervioso , Infección por el Virus Zika , Virus Zika , Animales , Antivirales , Muerte Celular/genética , Quimiotaxis , Femenino , Humanos , Inmunidad , MicroARNs/genética , Microcefalia/genética , Mosquitos Vectores , Embarazo , Virus Zika/fisiología
8.
Expert Opin Drug Discov ; 17(1): 19-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34461793

RESUMEN

INTRODUCTION: Congenital Zika syndrome is caused by Zika virus (ZIKV) infection during pregnancy and can culminate in structural and neurological defects in the fetus, including a spectrum of symptoms such as brain calcifications, hydrocephalus, holoprosencephaly, lissencephaly, ventriculomegaly, and microcephaly. Using animal models to study ZIKV infection during pregnancy represents a critical tool for understanding ZIKV pathophysiology, drug testing, vaccine development, and prevention of vertical transmission. AREAS COVERED: In this review, the authors cover state-of-the-art preclinical pregnancy models of ZIKV infection for drug discovery and vaccine development to prevent vertical transmission. EXPERT OPINION: The discovery of drugs against ZIKV infection represents an urgent necessity, and until now, no effective drug that can prevent the effects of vertical transmission has been tested in humans. Even after six years of the ZIKV outbreak in Brazil, no drugs or vaccines have been approved for use in humans. In part, this failure could be related to the lack of translatability from available preclinical models to humans.


Asunto(s)
Microcefalia , Preparaciones Farmacéuticas , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Embarazo , Vacunas Virales/uso terapéutico , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control
9.
Brain Behav Immun Health ; 11: 100190, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34589727

RESUMEN

BACKGROUND: Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. METHODS: We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. RESULTS: T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. CONCLUSIONS: BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii.

10.
Neuroimmunomodulation ; 28(4): 229-232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34082423

RESUMEN

INTRODUCTION: The aim of this case was to investigate the association of the Zika virus infection in utero with the autism spectrum disorder (ASD) as clinical outcome that presented no congenital anomalies. METHODS: ASD was diagnosed in the second year of life by different child neurologists and confirmed by DSM-5 and ASQ. After that, an extensive clinical, epidemiological, and genetic evaluations were performed, with main known ASD causes ruled out. RESULTS: An extensive laboratorial search was done, with normal findings. SNP array identified no pathogenic variants. Normal neuroimaging and EEG findings were also obtained. ZIKV (Zika virus) IgG was positive, while IgM was negative. Other congenital infections were negative. The exome sequencing did not reveal any pathogenic variant in genes related to ASD. CONCLUSION: Accordingly, this report firstly associates ZIKV exposure to ASD.


Asunto(s)
Trastorno del Espectro Autista , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Niño , Femenino , Humanos , Embarazo , Virus Zika/genética , Infección por el Virus Zika/complicaciones
11.
Adv Neurobiol ; 25: 207-218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32578148

RESUMEN

Neurodevelopmental disorders (ND) are characterized by an impairment of the nervous system during its development, with a wide variety of phenotypes based on genetic or environmental cues. There are currently several disorders grouped under ND including intellectual disabilities (ID), attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorders (ASD). Although NDs can have multiple culprits with varied diagnostics, several NDs present an inflammatory component. Taking advantage of induced pluripotent stem cells (iPSC), several disorders were modeled in a dish complementing in vivo data from rodent models or clinical data. Monogenic syndromes displaying ND are more feasible to be modeled using iPSCs also due to the ability to recruit patients and clinical data available. Some of these genetic disorders are Fragile X Syndrome (FXS), Rett Syndrome (RTT), and Down Syndrome (DS). Environmental NDs can be caused by maternal immune activation (MIA), such as the infection with Zika virus during pregnancy known to cause neural damage to the fetus. Our goal in this chapter is to review the advances of using stem cell research in NDs, focusing on the role of neuroinflammation on ASD and environmental NDs studies.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Infección por el Virus Zika , Virus Zika , Síndrome del Cromosoma X Frágil/genética , Humanos , Inflamación
12.
Transl Psychiatry ; 10(1): 141, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398742

RESUMEN

Psychiatric and neurological disorders (PNDs) affect millions worldwide and only a few drugs achieve complete therapeutic success in the treatment of these disorders. Due to the high cost of developing novel drugs, drug repositioning represents a promising alternative method of treatment. In this manuscript, we used a network medicine approach to investigate the molecular characteristics of PNDs and identify novel drug candidates for repositioning. Using IBM Watson for Drug Discovery, a powerful machine learning text-mining application, we built knowledge networks containing connections between PNDs and genes or drugs mentioned in the scientific literature published in the past 50 years. This approach revealed several drugs that target key PND-related genes, which have never been used to treat these disorders to date. We validate our framework by detecting drugs that have been undergoing clinical trial for treating some of the PNDs, but have no published results in their support. Our data provides comprehensive insights into the molecular pathology of PNDs and offers promising drug repositioning candidates for follow-up trials.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades del Sistema Nervioso , Biología Computacional , Minería de Datos , Humanos , Aprendizaje Automático , Enfermedades del Sistema Nervioso/tratamiento farmacológico
13.
Front Cell Neurosci ; 14: 25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153365

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are frequently used to treat depression during pregnancy. Various concerns have been raised about the possible effects of these drugs on fetal development. Current developmental neurotoxicity (DNT) testing conducted in rodents is expensive, time-consuming, and does not necessarily represent human pathophysiology. A human, in vitro testing battery to cover key events of brain development, could potentially overcome these challenges. In this study, we assess the DNT of paroxetine-a widely used SSRI which has shown contradictory evidence regarding effects on human brain development using a versatile, organotypic human induced pluripotent stem cell (iPSC)-derived brain model (BrainSpheres). At therapeutic blood concentrations, which lie between 20 and 60 ng/ml, Paroxetine led to an 80% decrease in the expression of synaptic markers, a 60% decrease in neurite outgrowth and a 40-75% decrease in the overall oligodendrocyte cell population, compared to controls. These results were consistently shown in two different iPSC lines and indicate that relevant therapeutic concentrations of Paroxetine induce brain cell development abnormalities which could lead to adverse effects.

14.
Anat Rec (Hoboken) ; 303(7): 1812-1820, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31520456

RESUMEN

Central nervous system (CNS) trauma is often related to tissue loss, leading to partial or complete disruption of spinal cord function due to neuronal death. Although generally irreversible, traditional therapeutic efforts, such as physical therapy exercises, are generally recommended, but with a poor or reduced improvement of the microenvironment, which in turn stimulates neuroplasticity and neuroregeneration. Mesenchymal stem cells (MSCs) have paracrine, immunomodulatory, and anti-inflammatory effects. Here we use stem cells to see if they can promote not only physical but also the functional regeneration of neuronal tissue in dogs with CNS traumas. Two dogs, one with chronic spinal cord injury and one with subacute spinal cord injury, underwent infusion of autologous MSCs in association with physiotherapy. The two treatments in combination were able to partially or completely recover the dog's walking movement again. The treatment of MSCs in association with physical therapy improved the microenvironment, which could be evidence of a paradigm shift that the CNS is not capable of functional regeneration after aggressive traumas. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1812-1820, 2020. © 2019 American Association for Anatomy.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Regeneración Nerviosa/fisiología , Paraplejía/veterinaria , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/veterinaria , Animales , Perros , Paraplejía/etiología , Paraplejía/terapia , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Terapéutica
15.
Front Psychiatry ; 10: 409, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231258

RESUMEN

Several efforts in basic and clinical research have been contributing to unveiling the genetics behind autism spectrum disorders (ASD). However, despite these advancements, many individuals diagnosed with ASD and related neuropsychiatric conditions have been genetically investigated without elucidative results. The enormous genetic complexity of ASD-related conditions makes it a significant challenge to achieve, with a growing number of genes (close to a thousand) involved, belonging to different molecular pathways and presenting distinct genetic variations. Next-generation sequencing (NGS) is the approach most used in genetic research related to ASD, identifying de novo mutation, which is closely related to more severe clinical phenotypes, especially when they affect constrained and loss-of-function intolerant genes. On the other hand, de novo mutation findings contribute to a small percentage of the ASD population, since most of the cases and genetic variants associated with neuropsychiatric conditions are inherited and phenotypes are results of additive polygenic models, which makes statistical efforts more difficult. As a result, NGS investigation can sound vainly or unsuccessful, and new mutations on genes already related with ASD are classified as variants of unknown significance (VUS), hampering their endorsement to a clinical phenotype. This review is focused on currently available strategies to clarify the impact of VUS and to describe the efforts to identify more pieces of evidence throughout clinical interpretation and genetic curation process.

16.
Heliyon ; 5(6): e01857, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31198874

RESUMEN

Researchers have used dogs with neurological sequelae caused by distemper as an experimental model for multiple sclerosis, owing to the similarities of the neuropathological changes between distemper virus-induced demyelinating leukoencephalitis and multiple sclerosis in humans. However, little is known about the role of mesenchymal stem cells in treating such clinical conditions. Therefore, we investigated the use of mesenchymal stem cells in four dogs with neurological lesions caused by the distemper virus. During the first year after cellular therapy, the animals did not demonstrate significant changes in their locomotive abilities. However, the intense (Grade V) myoclonus in three animals was reduced to a moderate (Grade IV) level. At one year after the mesenchymal stem cell infusions, three animals regained functional ambulation (Grade I), and all four dogs started to move independently (Grades I and II). In two animals, the myoclonic severity had become mild (Grade III). It was concluded that the use of mesenchymal stem cells could improve the quality of life of dogs with neurological sequelae caused by canine distemper, thus presenting hope for similar positive results in human patients with multiple sclerosis.

17.
Neurobiol Dis ; 130: 104483, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31129084

RESUMEN

Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that influence social skills, involving communication, interaction, and behavior, usually with repetitive and restrictive manners. Due to the variety of genes involved in ASDs and several possible environmental factors influence, there is still no answer to what really causes syndromic and non-syndromic types of ASDs, usually affecting each individual in a unique way. However, we know that the mechanism underlying ASDs involves brain functioning. The human brain is a complex structure composed of close to 100 billion cells, which is a big challenge to study counting just with post mortem tissue investigation or genetic approaches. Therefore, human induced pluripotent stem cells (iPSC) technology has been used as a tool to produce viable cells for understanding a working brain. Taking advantage of patient-derived stem cells, researchers are now able to generate neurons, glial cells and brain organoids in vitro to model ASDs. In this review we report data from different studies showing how iPSCs have been a critical tool to study the different phenotypes of ASDs.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Células Madre Pluripotentes Inducidas , Modelos Neurológicos , Células-Madre Neurales , Células Cultivadas , Humanos
18.
Expert Opin Drug Discov ; 14(6): 577-589, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30991850

RESUMEN

INTRODUCTION: Just before the Brazilian outbreak, Zika virus was related to a mild infection, causing fever and skin rash. Congenital Zika Syndrome was first described in Brazil, causing microcephaly and malformations in newborns. Three years after the outbreak, the mechanisms of Zika pathogenesis are still not completely elucidated. Moreover, as of today, there is still no approved vaccine that can be administered to the susceptible population. Considering the unmet clinical need, animal models represent an unprecedented opportunity to study Zika pathophysiology and test drugs for the treatment and prevention of vertical transmission. Areas covered: The authors explore the current knowledge about Zika through animal models and advancements in drug discovery by highlighting drugs with the greatest potential to treat ZIKV infection and block vertical transmission. Expert opinion: Some drugs used to treat other infections have been repurposed to treat Zika infection, reducing the cost and time for clinical application. One promising example is Sofosbuvir, which protected mice models against Zika pathogenesis by preventing vertical transmission. Importantly, there is a lack on exploration on the long-term effects of Zika Congenital Syndrome, as well as the possible ways to treat its sequelae.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas/métodos , Infección por el Virus Zika/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Ratones , Microcefalia/prevención & control , Microcefalia/virología , Embarazo , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/fisiopatología
19.
Front Cell Neurosci ; 13: 64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949028

RESUMEN

Growing evidences have associated Zika virus (ZIKV) infection with congenital malformations, including microcephaly. Nonetheless, signaling mechanisms that promote the disease outcome are far from being understood, affecting the development of suitable therapeutics. In this study, we applied shotgun mass spectrometry (MS)-based proteomics combined with cell biology approaches to characterize altered molecular pathways on human neuroprogenitor cells (NPC) and neurons derived from induced pluripotent stem cells infected by ZIKV-BR strain, obtained from the 2015 Brazilian outbreak. Furthermore, ZIKV-BR infected NPCs showed unique alteration of pathways involved in neurological diseases, cell death, survival and embryonic development compared to ZIKV-AF, showing a human adaptation of the Brazilian viral strain. Besides, infected neurons differentiated from NPC presented an impairment of neurogenesis and synaptogenesis processes. Taken together, these data explain that CNS developmental arrest observed in Congenital Zika Syndrome is beyond neuronal cell death.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA