Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 265: 124889, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399649

RESUMEN

A novel approach using a smartphone for the detection of Cr (VI) has been developed. In this context, two different platforms were designed for the detection of Cr (VI). The first one was synthesized via a crosslinking reaction of chitosan with 1,5-Diphenylcarbazide (DPC-CS). The obtained material was integrated into a paper to develop a new paper-based analytical device (DPC-CS-PAD). The DPC-CS-PAD exhibited high specificity toward Cr (VI). The second platform (DPC-Nylon PAD) was prepared by covalent immobilization of DPC onto a Nylon paper and then its analytical performances regarding Cr (VI) extraction and detection were evaluated. DPC-CS-PAD presented a linear range of 0.1-5 ppm with detection and quantification limits of about 0.04 and 0.12 ppm, respectively. The DPC-Nylon-PAD exhibited a linear response of 0.1-2.5 ppm with detection and quantification limits of 0.06 and 0.2 ppm, respectively. Furthermore, the developed platforms were effectively applied for testing the effect of the loading solution volume for trace Cr (IV) detection. For the DPC-CS material, a volume of 20 mL allowed the detection of 4 ppb of Cr (VI). In the case of DPC-Nylon-PAD, the loading volume of 1 mL permitted the detection of the critical concentration of Cr (VI) in water.

2.
Anal Methods ; 14(20): 2014-2025, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35545944

RESUMEN

In this work, a novel, cost-effective, and eco-friendly electrochemical (EC) nanosensor was fabricated for the simultaneous detection of daptomycin (DAP) and meropenem (MEROP). EC methods have been developed for the determination of antibiotics. In this context, green synthesized copper nanoparticles (CuNPs) using Moringa oleifera plant extract were used as electrode modifiers. The incorporation of CuNPs was proposed to enhance the sensitivity and allow the simultaneous quantification of both antibiotics in water. Transmission electron microscopy (TEM), dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, UV-visible spectroscopy, and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX) were employed to characterize CuNPs. Physical adsorption of 20.0 nm (±2.2 nm) spherical CuNPs on the surface of screen-printed carbon electrodes (SPCEs) induced a remarkable electrocatalytic effect. Indeed, the detection of both antibiotics exhibited a limit of detection (LOD) of 0.01 g L-1. The response to various interfering species was assessed. Finally, the quantification of DAP and MEROP in drinking water was demonstrated, confirming the potential of the developed sensor for environmental monitoring applications.


Asunto(s)
Agua Potable , Nanopartículas , Antibacterianos/farmacología , Cobre/química , Cobre/farmacología , Técnicas Electroquímicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA