Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Toxins (Basel) ; 14(7)2022 07 07.
Article En | MEDLINE | ID: mdl-35878203

In this paper, we assessed the ability of two strains of Saccharomyces cerevisiae, in viable and dead forms, to remove ochratoxin A (OTA) from an artificially contaminated synthetic grape juice medium (SGM) (10 µg OTA/L) and a naturally contaminated grape juice (6.64 µg OTA/L). The first strain, named Levulin FB, is a commercial yeast used in making wine. The second, named SC5, is an autochthonous strain isolated from table grapes. OTA concentrations in juices before and after their contact with yeast cells were assessed. A significant decrease in OTA level (p < 0.05) in the SGM medium and in the natural grape juice was observed after 1 h of adding yeast cells (20 g/L) in viable and heat-treated forms. It was inferred that the dead forms of the two strains were more able to eliminate OTA than their viable forms in both media. This study demonstrates the potential application of an autochthonous yeast for the natural decontamination of grape juice from fungal toxins.


Ochratoxins , Vitis , Wine , Culture Media , Ochratoxins/analysis , Saccharomyces cerevisiae , Vitis/microbiology , Wine/analysis
2.
Polymers (Basel) ; 13(11)2021 May 26.
Article En | MEDLINE | ID: mdl-34073555

A magnetic polymer-based nanocomposite was fabricated by the modification of an Fe3O4/SiO2 magnetic composite with polypyrrole (PPy) via co-precipitation polymerization to form PPy/Fe3O4/SiO2 for the removal of Congo red dye (CR) and hexavalent chromium Cr(VI) ions from water. The nanocomposite was characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), vibration sample magnetometer, and thermogravimetric analysis (TGA). The results confirm the successful fabrication of the nanocomposite in the size of nanometers. The effect of different conditions such as the contact time, adsorbent dosage, solution pH, and initial concentration on the adsorption process was investigated. The adsorption isotherm suggested monolayer adsorption of both contaminants over the PPy/Fe3O4/SiO2 nanocomposite following a Langmuir isotherm, with maximum adsorption of 361 and 298 mg.g-1 for CR dye and Cr(VI), respectively. Furthermore, the effect of water type on the adsorption process was examined, indicating the applicability of the PPy/Fe3O4/SiO2 nanocomposite for real sample treatment. Interestingly, the reusability of the nanocomposite for the removal of the studied contaminants was investigated with good results even after six successive cycles. All results make this nanocomposite a promising material for water treatment.

3.
Materials (Basel) ; 14(6)2021 Mar 11.
Article En | MEDLINE | ID: mdl-33799810

Nowadays, people over the world face severe water scarcity despite the presence of several water sources. Adsorption is considered as the most efficient technique for the treatment of water containing biological, organic, and inorganic contaminants. For this purpose, materials from various origins (clay minerals, modified clays, zeolites, activated carbon, polymeric resins, etc.) have been considered as adsorbent for contaminants. Despite their cheapness and valuable properties, the use of clay minerals as adsorbent for wastewater treatment is limited due to many factors (low surface area, regeneration, and recovery limit, etc.). However, clay mineral can be used to enhance the performance of polymeric materials. The combination of clay minerals and polymers produces clay-polymers nanocomposites (CPNs) with advanced properties useful for pollutants removal. CPNs received a lot of attention for their efficient removal rate of various organic and inorganic contaminants via flocculation and adsorption ability. Three main classes of CPNs were developed (exfoliated nanocomposites (NCs), intercalated nanocomposites, and phase-separated microcomposites). The improved materials can be explored as novel and cost-effective adsorbents for the removal of organic and inorganic pollutants from water/wastewater. The literature reported the ability of CPNs to remove various pollutants such as bacteria, metals, phenol, tannic acid, pesticides, dyes, etc. CPNs showed higher adsorption capacity and efficient water treatment compared to the individual components. Moreover, CPNs offered better regeneration than clay materials. The present paper summarizes the different types of clay-polymers nanocomposites and their effective removal of different contaminants from water. Based on various criteria, CPNs future as promising adsorbent for water treatment is discussed.

4.
Asian Biomed (Res Rev News) ; 14(6): 261-270, 2020 Dec.
Article En | MEDLINE | ID: mdl-37551305

Background: The composition and activities of essential oil of common sage from Saudi Arabia have not yet been reported. Objectives: To analyze the composition and antibacterial and antioxidant activities of essential oil from leaves of the common sage Salvia officinalis L. from Abha, Saudi Arabia. Methods: Essential oil was extracted from the leaves of S. officinalis by hydrodistillation, and its composition was analyzed using gas chromatography and mass spectrometry. Phenolics and flavonoids were determined using gallic acid and quercetin standards. Antioxidant activity was determined using a 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. Activity against various gram-positive and gram-negative bacteria was determined by disk diffusion and microdilution. Results: The yield of essential oil was 3.24 ± 0.55% (w/dry weight). Major compounds identified were camphor (20.3%), 1,8-cineole (15.0%), α-thujone (14.9%), viridiflorol (9.9%), carvone (6.2%), and ß-thujone (5.7%). Phenolic content was 134.3 ± 17.61 µg/mL and flavonoid content was 119.5 ± 18.75 µg/mL. Antioxidant IC50 was 970 ± 5.5 µg/mL. The highest gram-positive antibacterial activity was for Bacillus subtilis and the highest gram-negative activity was for Escherichia coli. Minimum inhibitory concentrations ranged from 62.2 ± 3.9 to 1398.1 ± 50.7 µg/mL for gram-positive bacteria and from 323.4 ± 69.5 to 968.4 ± 120.6 µg/mL for gram-negative bacteria. Minimum bactericidal concentrations ranged from 120.3 ± 7.6 to 1387.4 ± 161.8 µg/mL for gram-positive bacteria and from 386 ± 8.3 to 1225.2 ± 100.9 µg/mL for gram-negative bacteria. Conclusions: Essential oil of S. officinalis L. from Abha, Saudi Arabia, showed compositional, antioxidant, and antibacterial properties generally consistent with essential oil of S. officinalis L. from other locations as reported in the literature.

5.
Braz J Microbiol ; 46(2): 407-13, 2015 Jun.
Article En | MEDLINE | ID: mdl-26273255

The objective of this study was to evaluate the exopolysaccharide (EPS) production by Rhizobium leguminosarum cultivated in wastewater generated by oil companies (WWOC1 and WWOC2) and fish processing industry (WWFP). The results obtained in Erlenmeyer flasks indicated that the rhizobial strain grew well in industrial wastewater. Generally, wastewater composition affected the growth and the EPS production. WWFP allowed good bacterial growth similar to that obtained with the standard medium (YMB). During growth, various quantities of EPS were produced and yields varied depending on the media. Growing in YMB, EPS production did not exceed 9.7 g/L obtained after 72 h of growth. In wastewater, the maximum EPS value reached 11.1 g/L obtained with the fish processing wastewater, after 72 h of growth. The use of a mixture of the oil company wastewater (WWOC2) and the fish processing wastewater (WWFP) as culture medium affected not only the rhizobial strain growth, but also EPS production. The highest EPS (42.4 g/L, after 96 h of culture) was obtained using a ratio of WWFP and WWOC2 of 50:50 (v:v). Therefore, this work shows the ability of Rhizobium leguminosarum, growing in industrial wastewater as new economic medium, to produce EPS. This biopolymer could be applied in enormous biotechnological areas.


Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/metabolism , Wastewater/microbiology , Food Industry , Industrial Waste , Oil and Gas Industry
6.
Braz. j. microbiol ; 46(2): 407-413, Apr-Jun/2015. tab, graf
Article En | LILACS | ID: lil-749745

The objective of this study was to evaluate the exopolysaccharide (EPS) production by Rhizobium leguminosarum cultivated in wastewater generated by oil companies (WWOC1 and WWOC2) and fish processing industry (WWFP). The results obtained in Erlenmeyer flasks indicated that the rhizobial strain grew well in industrial wastewater. Generally, wastewater composition affected the growth and the EPS production. WWFP allowed good bacterial growth similar to that obtained with the standard medium (YMB). During growth, various quantities of EPS were produced and yields varied depending on the media. Growing in YMB, EPS production did not exceed 9.7 g/L obtained after 72 h of growth. In wastewater, the maximum EPS value reached 11.1 g/L obtained with the fish processing wastewater, after 72 h of growth. The use of a mixture of the oil company wastewater (WWOC2) and the fish processing wastewater (WWFP) as culture medium affected not only the rhizobial strain growth, but also EPS production. The highest EPS (42.4 g/L, after 96 h of culture) was obtained using a ratio of WWFP and WWOC2 of 50:50 (v:v). Therefore, this work shows the ability of Rhizobium leguminosarum, growing in industrial wastewater as new economic medium, to produce EPS. This biopolymer could be applied in enormous biotechnological areas.


Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/metabolism , Wastewater/microbiology , Food Industry , Industrial Waste , Oil and Gas Industry
7.
Water Sci Technol ; 70(7): 1175-81, 2014.
Article En | MEDLINE | ID: mdl-25325541

Most industries in the world treat their wastewaters with a conventional coagulation-flocculation process using alum as coagulant, polyacrylamide (PAM) as flocculant and lime as coagulant aid. To reduce the use of chemical products in the process, experiments were conducted to substitute the PAM with cactus juice (CJ) as flocculant. From the obtained data, it was concluded that the substitution of PAM with CJ in the coagulation-flocculation process was very effective, compared with PAM. Depending on the wastewater's origin, the bioflocculant showed removal efficiencies of 83.3-88.7% for suspended solids (SS) and 59.1-69.1% for chemical oxygen demand (COD). Lime addition enhanced the coagulation-flocculation process in the presence of CJ similarly to the PAM with efficiencies greater than 90% for both SS and COD. The CJ powder's infrared (IR) spectrum showed the main functional groups present in PAM. It was concluded that CJ as a flocculant fits well with the definition of sustainability and it is appropriate for countries that have regions where cactuses grow naturally.

8.
Environ Technol ; 34(13-16): 2259-66, 2013.
Article En | MEDLINE | ID: mdl-24350480

Lipase production by Staphylococcus xylosus and Rhizopus oryzae was investigated using a culture medium based on a mixture of synthetic medium and supernatants generated from tuna by-products and Ulva rigida biomass. The proportion of the three medium components was optimized using the simplex-centroid mixture design method (SCMD). Results indicated that the experimental data were in good agreement with predicted values, indicating that SCMD was a reliable method for determining the optimum mixture proportion of the growth medium. Maximal lipase activities of 12.5 and 23.5 IU/mL were obtained with a 50:50 (v:v) mixture of synthetic medium and tuna by-product supernatant for Staphylococcus xylosus and Rhizopus oryzae, respectively. The predicted responses from these mixture proportions were also validated experimentally.


Bacterial Proteins/biosynthesis , Bioreactors , Fungal Proteins/biosynthesis , Lipase/biosynthesis , Models, Statistical , Refuse Disposal/methods , Analysis of Variance , Animals , Bacterial Proteins/analysis , Bacterial Proteins/metabolism , Culture Media , Food-Processing Industry , Fungal Proteins/analysis , Fungal Proteins/metabolism , Industrial Waste , Lipase/analysis , Lipase/metabolism , Reproducibility of Results , Research Design , Rhizopus/chemistry , Rhizopus/metabolism , Staphylococcus/chemistry , Staphylococcus/metabolism , Tuna , Ulva
9.
3 Biotech ; 3(4): 255-265, 2013 Aug.
Article En | MEDLINE | ID: mdl-28324586

Fishery processing industries generate large amounts of by-products. The disposal of these wastes represents an increasing environmental and health problem. To avoid wasting these by-products, various disposal methods have been applied including, ensilation, fermentation, hydrolysate and fish oil production. Interestingly, fish by-products provide an excellent nutrient source for microbial growth useful in enzyme production process, which is largely governed by the cost related to the growth media. Fish wastes (heads, viscera, chitinous material, wastewater, etc.) were prepared and tested as growth substrates for microbial enzymes production such as protease, lipase, chitinolytic and ligninolytic enzymes. This new approach described in this review can reduce environmental problems associated with waste disposal and, simultaneously, lower the cost of microbial enzyme production.

11.
Appl Biochem Biotechnol ; 162(5): 1483-96, 2010 Nov.
Article En | MEDLINE | ID: mdl-20383604

A lipolytic activity was located in the sardine digestive glands (pyloric caeca), from which a sardine digestive lipase (SaDL) was purified. Pure SaDL has a molecular mass of 43 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The enzyme was found to be more active on short-chain triacylglycerols than on long-chain ones. SaDL does not present the interfacial activation phenomenon. Control experiments were performed under the same experimental conditions, with dromedary and turkey pancreatic lipases and showed a positive interfacial activation phenomenon. Sodium deoxycholate (NaDC) has an inhibitory effect on the lipase activity. The pure enzyme lost 40% of its activity in presence of 8 mM NaDC. SaDL was found to be mostly stable at low pH values. Interestingly, no colipase was detected in the sardine pyloric caeca. Analogous results were reported for the scorpion and the crab digestive systems. This is in line with the idea that colipase might has evolved in mammal animals simultaneously with the appearance of an exocrine pancreas. No similarity was found between the NH(2)-terminal amino acid residues of SaDL and those of lipases from the digestive tract of other species. Altogether, these results suggest that SaDL is a member of a new group of lipases belonging to aquatic species.


Acids/metabolism , Cecum/enzymology , Fishes/metabolism , Lipase/isolation & purification , Lipase/metabolism , Pylorus/enzymology , Ammonium Sulfate/pharmacology , Animals , Cecum/drug effects , Chemical Precipitation , Chromatography, Gel , Chromatography, Ion Exchange , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Hydrogen-Ion Concentration/drug effects , Immunoblotting , Lactones/pharmacology , Lipase/antagonists & inhibitors , Lipase/chemistry , Lipolysis/drug effects , Orlistat , Pylorus/drug effects , Serine/metabolism , Temperature
12.
Appl Biochem Biotechnol ; 158(1): 155-63, 2009 Jul.
Article En | MEDLINE | ID: mdl-18795238

In our study, the potential of producing polyhydroxybutyrate (PHB) by cultivating fast-growing rhizobia (Sinorhizobium meliloti, Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli and R. leguminosarum bv. trifolii) in sludge and in industrial wastewater was evaluated. Results confirmed the possibility of using sludge as media for rhizobial growth. During growth, substantial quantity of PHB was accumulated and yields varied depending on the media and rhizobial species. Growing in sludge, PHB production did not exceed 3.7% w/w for all strains at the end of experiment (after 72 h). During the growth of S. meliloti, PHB yield varied and the maximum value reached 7.27% w/w after 60 h, with 1% Total Suspend Solid (TSS) sludge. Alkaline sludge pre-treatment affects rhizobial growth but did not improve the PHB accumulation. While growing S. meliloti in industrial wastewater, the PHB yields varied and the highest value was obtained with slaughterhouse wastewater (10.7% w/w) after 35 h of growth. Therefore, this work shows the potential of exploiting PHB production by rhizobia growing in wastewater or sludge which could be applied to bioplastic industry, and confirms the potential of these recyclable wastes for high production of rhizobial cells useable for legumes inoculants production. This study provides an environmentally sound way of sludge and wastewater management and use in diverse biotechnological applications.


Hydroxybutyrates/metabolism , Industrial Waste , Polyesters/metabolism , Rhizobium/growth & development , Rhizobium/metabolism , Sewage/microbiology , Sinorhizobium meliloti/growth & development , Sinorhizobium meliloti/metabolism , Hydrogen-Ion Concentration , Time Factors
13.
Appl Biochem Biotechnol ; 151(1): 71-9, 2008 Oct.
Article En | MEDLINE | ID: mdl-18785022

The lipase inhibitory activity of ethanol extracts obtained from some marine algae collected on the Tunisian coast was evaluated. Caulerpa prolifera extract markedly reduced both dog gastric (DGL) and human pancreatic lipase (HPL) activities. Generally, the inhibition reached 100% after 40 to 60 min of incubation depending on lipase types and on substrates used. Moreover, the inhibitory effect of C. prolifera extract on lipases appeared to be accelerated by adding bile salts, which likely modified the interface and allowed the inhibitory compound to inactivate the lipase. The separation of C. prolifera extract by thin-layer chromatography (TLC) resulted in eight fractions showing efficient inhibition rate against DGL, compared to the crude extract. In the case of HPL, TLC fractionation reduced the inhibitory rates, suggesting that the effect of algal extract on lipases may be caused by a synergetic action of several compounds within the extract. High-performance liquid chromatograph separation resulted in isolation of a major compound displaying high inhibition capacity of HPL activity. Caulerpa prolifera extract may therefore be useful in developing antiobesity drugs.


Eukaryota/chemistry , Gastric Juice/chemistry , Gastric Juice/enzymology , Lipase/antagonists & inhibitors , Pancreatic Juice/chemistry , Pancreatic Juice/enzymology , Animals , Dogs , Oceans and Seas , Tunisia
...