Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(29): 19435-19445, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37435640

RESUMEN

The dissociation of OCS2+ ions formed by photoionization of the neutral molecule at 40.81 eV is examined using threefold and fourfold electron-ion coincidence spectroscopy combined with high level quantum chemical calculations on isomeric structures and their potential energy surfaces. The dominant dissociation channel of [OCS]2+ is charge separation forming CO+ + S+ ion pairs, found here to be formed with low intensity at a lower-energy onset and with a correspondingly smaller kinetic energy release than in the more intense higher energy channel previously reported. We explain the formation of CO+ + S+ ion pairs at low as well as higher ionization energies by the existence of two predissociation channels, one involving a newly identified COS2+ metastable state. We conclude that the dominant CO+ + S+ channel with 5.2 eV kinetic energy release is reached upon OCS2+ → COS2+ isomerization, whereas the smaller kinetic energy release (of ∼4 eV) results from the direct fragmentation of OCS2+ (X3Σ-) ions. Dissociation of the COS2+ isomer also explains the existence of the minor C+ + SO+ ion pair channel. We suggest that isomerization prior to dissociation may be a widespread mechanism in dications and more generally in multiply charged ion dissociations.

2.
Sci Adv ; 8(33): eabq5411, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984889

RESUMEN

Molecular oxygen, O2, is vital to life on Earth and possibly also on exoplanets. Although the biogenic processes leading to its accumulation in Earth's atmosphere are well understood, its abiotic origin is still not fully established. Here, we report combined experimental and theoretical evidence for electronic state-selective production of O2 from SO2, a chemical constituent of many planetary atmospheres and one that played an important part on Earth in the Great Oxidation Event. The O2 production involves dissociative double ionization of SO2 leading to efficient formation of the [Formula: see text] ion, which can be converted to abiotic O2 by electron neutralization or by charge exchange. This formation process may contribute substantially to the abundance of O2 and related ions in planetary atmospheres, such as the Jovian moons Io, Europa, and Ganymede. We suggest that this sort of ionic pathway for the formation of abiotic O2 involving multiply charged molecular ion decomposition may also exist for other atmospheric and planetary molecules.

3.
J Phys Chem A ; 124(52): 11061-11071, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33347316

RESUMEN

We carried out a theoretical, fully ab initio, investigation of the stable forms of the [H,C,N,O,O] pentatomic molecular system, whose isomers are involved in fundamental combustion and atmospheric processes and are of potential interest for astrophysics. By adopting the MP2 and CCSD(T) electronic structure methods, combined with extrapolations to the complete basis set (CBS) limit, we characterized 20 low-energy isomers, excluding weak van der Waals complexes. For these molecules, we determined a set of geometrical parameters, relative energies, anharmonic vibrational frequencies, IR intensities, and fragmentation/formation energies from various atomic and/or molecular fragments. We discuss the relevance of the present findings for the search of new molecular species in astrophysical and atmospheric media and give suggestions for their possible detection in laboratory experiments. The set of data provided by the present work should facilitate the identification of these species from their gas-phase and low-temperature solid matrix spectra, whenever measured.

4.
Phys Chem Chem Phys ; 22(30): 17052-17061, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32658239

RESUMEN

Sulfenyl thiocyanate compounds, RSSCN, are involved in the human immune system biochemical processes. They are also the routes for the synthesis of complex S-containing species such as polypeptides, or symmetrical (RSSR) and unsymmetrical disulfides (RSSR'). At present, we have characterized the stable forms of the simplest sulfenyl thiocyanate compound, HSSCN, at the coupled cluster level. We found twenty-three isomers, for which we determined a set of structural parameters, anharmonic frequencies and reaction energies for the formation of the corresponding diatomic + triatomic and atomic + tetratomic fragments. We also discussed the implications of the present findings for biological entities containing a disulfide bridge, where we identified three isomers that may serve as prototypes. Similarities and differences with other S/N hybrid bioactive molecules are also discussed. From an astrophysical point of view, we expect HSSCN isomers to be present in astrophysical media, since several of their molecular fragments have already been detected. In sum, the present set of data can be used for the identification of HSSCN compounds and understanding the physical chemistry of sulfur containing molecules in vivo, in the laboratory and in astrophysical media.


Asunto(s)
Análisis Espectral , Tiocianatos/química , Isomerismo , Tiocianatos/metabolismo
5.
J Chem Phys ; 145(8): 084307, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-27586922

RESUMEN

Ab initio methods in conjunction with a large basis set are used to compute the potential energy surfaces of the 12 lowest electronic states of the HNS(+) and HSN(+) isomeric forms. These potentials are used in discussions of the metastability of these cations and plausible mechanisms for the H(+)/H + SN(+)/SN, S/S(+) + NH(+)/NH, N/N(+) + SH(+)/SH ion-molecule reactions. Interestingly, the low rovibrational levels of HSN(+)(1(2)A″) and HNS(+)(1(2)A″) electronically excited ions are predicted to be long-lived. Both ions are suggested to be a suitable candidate for light-sensitive NO(⋅) donor in vivo and as a possible marker for the detection of intermediates in nitrites + H2S reactions at the cellular level. The full spin rovibronic levels of HNS(+) are presented, which may assist in the experimental identification of HNS(+) and HSN(+) ions and in elucidating their roles in astrophysical and biological media.


Asunto(s)
Cationes/química , Hidrógeno/química , Nitrógeno/química , Azufre/química , Electricidad , Isomerismo , Modelos Químicos , Análisis Espectral
6.
J Chem Phys ; 143(13): 134301, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26450308

RESUMEN

Results are presented that suggest that thiazyl hydride (HSN)/thionitrosyl hydride (sulfimide, HNS) can be used as light-sensitive compounds for NO-delivery in biological media, as well as markers for the possible detection of intermediates in nitrites + H2S reactions at the cellular level. They are expected to be more efficient than the HNO/HON isovalent species and hence they should be considered instead. A set of characteristic spectroscopic features are identified that could aid in the possible detection of these species in the gas phase or in biological environments. The possibility of intramolecular dynamical processes involving excited states that are capable of interconverting HNS and its isomeric form HSN is examined.


Asunto(s)
Luz , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Tiazoles/química , Electrones , Teoría Cuántica
7.
J Chem Phys ; 139(17): 174313, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24206304

RESUMEN

Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS(x) and HSP(x) (x = -1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm(-1) above the minima of the corresponding PESs.

8.
J Chem Phys ; 136(24): 244309, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22755576

RESUMEN

Highly correlated ab initio methods were used in order to generate the potential energy curves and spin-orbit couplings of electronic ground and excited states of PS and PS(+). We also computed those of the bound parts of the electronic states of the PS(-) anion. We used standard coupled cluster CCSD(T) level with augmented correlation-consistent basis sets, internally contacted multi-reference configuration interaction, and the newly developed CCSD(T)-F12 methods in connection with the explicitly correlated basis sets. Core-valence correction and scalar relativistic effects were examined. Our data consist of a set of spectroscopic parameters (equilibrium geometries, harmonic vibrational frequencies, rotational constants, spin-orbit, and spin-spin constants), adiabatic ionization energies, and electron affinities. For the low laying electronic states, our calculations are consistent with previous works whereas the high excited states present rather different shapes. Based on these new computations, the earlier ultraviolet bands of PS and PS(+) were reassigned. For PS(-) and in addition to the already known anionic three bound electronic states (i.e., X(3)Σ(-), (1)Δ, and 1(1)Σ(+)), our calculations show that the (1)Σ(-), (3)Σ(+), and the (3)Δ states are energetically below their quartet parent neutral state (a(4)Π). The depletion of the J = 3 component of PS(-)((3)Δ) will mainly occur via weak interactions with the electron continuum wave.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...