Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Neuropharmacol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39005130

RESUMEN

BACKGROUND: Inflammasome overactivation, multiprotein complexes that trigger inflammatory responses, plays a critical role in Major Depressive Disorder (MDD) pathogenesis and treatment responses. Indeed, different antidepressants alleviate depression-related behaviours by specifically counteracting the NLRP3 inflammasome signalling pathway. The immunomodulatory effects of vortioxetine (VTX), a multimodal antidepressant with cognitive benefits, were recently revealed to counter memory impairment induced by a peripheral lipopolysaccharide (LPS) injection 24 hours (h) postchallenge. METHODS: The potential link between VTX and NLRP3, along with other inflammasomes, remains unexplored. Hence, adult C57BL/6J male mice (n = 73) were fed with a standard or VTX-enriched diet (600 mg/kg of food, 28 days), injected with LPS (830 µg/kg) or saline, and sacrificed 6/24 h post-LPS. At these time-points, transcriptional effects of LPS and VTX's on NLRP3, NLRP1, NLRC4, AIM2 (inflammasomes), ASC and CASP1 (related subunits) and NEK7 mediator (NLRP3 regulator) were assessed in dorsal and ventral hippocampal subregions, frontal-prefrontal cortex and hypothalamus, brain regions serving behavioural-cognitive functions impaired in MDD. RESULTS: Varied expression patterns of inflammasomes were revealed, with long-term NLRP3 and ASC transcriptional changes observed in response to LPS. It was discovered that VTX counteracted the LPS-mediated NLRP3 and ASC upregulation in memory-related brain areas like the dorsal hippocampus at 24 h time-point, potentially via regulating NEK7 expression. No VTX-mediated transcriptional effects were observed on other inflammasomes, reinforcing a potentially specific modulation on the NLRP3 inflammasome signalling pathway. CONCLUSION: Thus, a novel VTX's molecular mechanism in modulating the NLRP3 inflammasome in a time- and area-specific manner in the brain was highlighted, with significant clinical implications in treating depression and cognitive impairments.

.

2.
J Neurochem ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922726

RESUMEN

The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.

3.
Front Pharmacol ; 15: 1379965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576478

RESUMEN

Almost all individuals with Down's syndrome (DS) show the characteristic neuropathological features of Alzheimer's disease (AD) by the age of 40, yet not every individual with DS experiences symptoms of AD later in life. Similar to neurotypical developing subjects, AD in people with DS lasts for a long preclinical phase in which biomarkers follow a predictable order of changes. Hence, a prolonged asymptomatic period precedes the onset of dementia, underscoring the importance of identifying new biomarkers for the early detection and monitoring of cognitive decline in individuals with DS. Blood-based biomarkers may offer an alternative non-invasive strategy for the detection of peripheral biological alterations paralleling nervous system pathology in an early phase of the AD continuum. In the last few years, a strong neurobiological link has been demonstrated between the deficit of transforming growth factor-ß1 (TGF-ß1) levels, an anti-inflammatory cytokine endowed with neuroprotective activity, and early pro-inflammatory processes in the AD brain. In this clinical prospective observational study, we found significant lower plasma TGF-ß1 concentrations at the first neuropsychological evaluation (baseline = T0) both in young adult DS individuals (19-35 years) and older DS subjects without AD (35-60 years) compared to age- and sex-matched healthy controls. Interestingly, we found that the lower TGF-ß1 plasma concentrations at T0 were strongly correlated with the following cognitive decline at 12 months. In addition, in young individuals with DS, we found, for the first time, a negative correlation between low TGF-ß1 concentrations and high TNF-α plasma concentrations, a pro-inflammatory cytokine that is known to be associated with cognitive impairment in DS individuals with AD. Finally, adopting an ex vivo approach, we found that TGF-ß1 concentrations were reduced in parallel both in the plasma and in the peripheral blood mononuclear cells (PBMCs) of DS subjects, and interestingly, therapeutic concentrations of fluoxetine (FLX) applied to cultured PBMCs (1 µM for 24 h) were able to rescue TGF-ß1 concentrations in the culture media from DS PBMCs, suggesting that FLX, a selective serotonin reuptake inhibitor (SSRI) endowed with neuroprotective activity, might rescue TGF-ß1 concentrations in DS subjects at higher risk to develop cognitive decline.

4.
J Exp Biol ; 227(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38639079

RESUMEN

Animals, including humans, learn and remember to avoid a novel food when its ingestion is followed, hours later, by sickness - a phenomenon initially identified during World War II as a potential means of pest control. In the 1960s, John Garcia (for whom the effect is now named) demonstrated that this form of conditioned taste aversion had broader implications, showing that it is a rapid but long-lasting taste-specific food aversion with a fundamental role in the evolution of behaviour. From the mid-1970s onward, the principles of the Garcia effect were translated to humans, showing its role in different clinical conditions (e.g. side-effects linked to chemotherapy). However, in the last two decades, the number of studies on the Garcia effect has undergone a considerable decline. Since its discovery in rodents, this form of learning was thought to be exclusive to mammals; however, we recently provided the first demonstration that a Garcia effect can be formed in an invertebrate model organism, the pond snail Lymnaea stagnalis. Thus, in this Commentary, after reviewing the experiments that led to the first characterization of the Garcia effect in rodents, we describe the recent evidence for the Garcia effect in L. stagnalis, which may pave the way for future studies in other invertebrates and mammals. This article aims to inspire future translational and ecological studies that characterize the conserved mechanisms underlying this form of learning with deep evolutionary roots, which can be used to address a range of different biological questions.


Asunto(s)
Condicionamiento Clásico , Gusto , Animales , Humanos , Lymnaea , Caracoles , Mamíferos
5.
Artículo en Inglés | MEDLINE | ID: mdl-37395798

RESUMEN

The pond snail Lymnaea stagnalis exhibits various forms of associative learning including (1) operant conditioning of aerial respiration where snails are trained not to open their pneumostome in a hypoxic pond water environment using a weak tactile stimulus to their pneumostome as they attempt to open it; and (2) a 24 h-lasting taste-specific learned avoidance known as the Garcia effect utilizing a lipopolysaccharide (LPS) injection just after snails eat a novel food substance (carrot). Typically, lab-inbred snails require two 0.5 h training sessions to form long-term memory (LTM) for operant conditioning of aerial respiration. However, some stressors (e.g., heat shock or predator scent) act as memory enhancers and thus a single 0.5 h training session is sufficient to enhance LTM formation lasting at least 24 h. Here, we found that snails forming a food-aversion LTM following Garcia-effect training exhibited enhanced LTM following operant condition of aerial respiration if trained in the presence of the food substance (carrot) they became averse to. Control experiments led us to conclude that carrot becomes a 'sickness' risk signal and acts as a stressor, sufficient to enhance LTM formation for another conditioning procedure.


Asunto(s)
Lymnaea , Memoria a Largo Plazo , Animales , Lymnaea/fisiología , Aprendizaje , Caracoles , Condicionamiento Operante/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-38013046

RESUMEN

A novel food followed by sickness, causes a taste-specific conditioned aversion, known as the 'Garcia effect'. We recently found that both a heat shock stressor (30 °C for 1 h - HS) and the bacterial lipopolysaccharide (LPS) can be used as 'sickness-inducing' stimuli to induce a Garcia effect in the pond snail Lymnaea stagnalis. Additionally, if snails are exposed to acetylsalicylic acid (ASA) present in aspirin tablets before the LPS injection, the formation of the Garcia effect is prevented. Here, we hypothesized that exposing snails to crushed aspirin before the HS (ASA-HS) would prevent the HS-induced 'sickness state' and - therefore -the Garcia effect. Unexpectantly, the ASA-HS procedure induced a generalized and long-lasting feeding suppression. We thus investigate the molecular effects underlying this phenomenon. While the exposure to the HS alone resulted in a significant upregulation of the mRNA levels of the Heat Shock Protein 70 (HSP 70) in snails' central ring ganglia, the ASA-HS procedure induced an even greater upregulation of HSP70, suggesting that the ASA-HS combination causes a severe stress response that inhibits feeding. Additionally, we found that the ASA-HS procedure induced a significant downregulation of the mRNA levels of genes involved with the serotoninergic system which regulates feeding in snails. Finally, the ASA-HS procedure prevented HS-induced upregulation of the mRNA levels of key neuroplasticity genes. Our study indicates that two sickness-inducing stimuli can have different physiological responses even if behavioral outcomes are similar under some learning contexts.


Asunto(s)
Aspirina , Lipopolisacáridos , Animales , Aspirina/farmacología , Lipopolisacáridos/farmacología , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , ARN Mensajero , Lymnaea/genética
7.
Biol Bull ; 244(2): 115-127, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37725701

RESUMEN

AbstractThe pond snail Lymnaea stagnalis employs aerial respiration under hypoxia and can be operantly conditioned to reduce this behavior. When applied individually, a heat shock (30 °C for 1 h) and the flavonoid quercetin enhance long-term memory formation for the operant conditioning of aerial respiration. However, when snails are exposed to quercetin before the heat shock, long-term memory is no longer enhanced. This is because quercetin prevents the heat-induced upregulation of heat-shock proteins 70 and 40. When we tested the memory outcome of operant conditioning due to the simultaneous exposure to quercetin and 30 °C, we found that Lymnaea entered a quiescent survival state. The same behavioral response occurred when snails were simultaneously exposed to quercetin and pond water made hypoxic by bubbling nitrogen through it. Thus, in this study, we performed six experiments to propose a physiological explanation for that curious behavioral response. Our results suggest that bubbling nitrogen in pond water, heating pond water to 30 °C, and bubbling nitrogen in 30 °C pond water create a hypoxic environment, to which organisms may respond by upregulating the heat-shock protein system. On the other hand, when snails experience quercetin together with these hypoxic conditions, they can no longer express the physiological stress response evoked by heat or hypoxia. Thus, the quiescent survival state could be an emergency response to survive the hypoxic condition when the heat-shock proteins cannot be activated.


Asunto(s)
Lymnaea , Quercetina , Animales , Quercetina/farmacología , Hipoxia , Nitrógeno , Agua
8.
Biology (Basel) ; 12(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37626986

RESUMEN

Lymnaea stagnalis learns and remembers to avoid certain foods when their ingestion is followed by sickness. This rapid, taste-specific, and long-lasting aversion-known as the Garcia effect-can be formed by exposing snails to a novel taste and 1 h later injecting them with lipopolysaccharide (LPS). However, the exposure of snails to acetylsalicylic acid (ASA) for 1 h before the LPS injection, prevents both the LPS-induced sickness state and the Garcia effect. Here, we investigated novel aspects of this unique form of conditioned taste aversion and its pharmacological regulation. We first explored the transcriptional effects in the snails' central nervous system induced by the injection with LPS (25 mg), the exposure to ASA (900 nM), as well as their combined presentation in untrained snails. Then, we investigated the behavioral and molecular mechanisms underlying the LPS-induced Garcia effect and its pharmacological regulation by ASA. LPS injection, both alone and during the Garcia effect procedure, upregulated the expression levels of immune- and stress-related targets. This upregulation was prevented by pre-exposure to ASA. While LPS alone did not affect the expression levels of neuroplasticity genes, its combination with the conditioning procedure resulted in their significant upregulation and memory formation for the Garcia effect.

9.
Children (Basel) ; 10(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37508714

RESUMEN

The incidence and collective impact of early adverse experiences, trauma, and pain continue to increase. This underscores the urgent need for translational efforts between clinical and preclinical research to better understand the underlying mechanisms and develop effective therapeutic approaches. As our understanding of these issues improves from studies in children and adolescents, we can create more precise preclinical models and ultimately translate our findings back to clinical practice. A multidisciplinary approach is essential for addressing the complex and wide-ranging effects of these experiences on individuals and society. This narrative review aims to (1) define pain and trauma experiences in childhood and adolescents, (2) discuss the relationship between pain and trauma, (3) consider the role of biological memory, (4) decipher the relationship between pain and trauma using preclinical data, and (5) examine the role of the environment by introducing the importance of epigenetic processes. The ultimate scope is to better understand the wide-ranging effects of trauma, abuse, and chronic pain on children and adolescents, how they occur, and how to prevent or mitigate their effects and develop effective treatment strategies that address both the underlying causes and the associated physiological and psychological effects.

10.
Neurobiol Learn Mem ; 203: 107775, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263390

RESUMEN

Predator detection induces both behavioral and physiological responses in prey organisms. Our model organism, the pond snail Lymnaea stagnalis, shows multiple defensive behaviors in response to predator cues. In this study, we investigated and compared the transcriptional effects induced by the exposure to a predator scent (i.e., crayfish effluent - CE) in a strain of lab-inbred snails (i.e., W snails), which have been raised and maintained under standardized laboratory conditions for generations and a strain of freshly collected snails (i.e., Margo snails), which live in a crayfish-free pond. Neither the W- strain nor the Margo Lake snails used in this study have actually experienced crayfish. However, the W strain innately recognizes crayfish as a threat. We found that, following the exposure to CE, both strains showed significantly higher mRNA levels of serotonin-related genes. This is important, as the serotonergic system modulates predator detection and vigilance behaviors in pond snails. However, the expression levels of CREB1 and HSP70 were only upregulated in CE-exposed W snails but not in Margo ones. As CREB1 plays a key role in learning and memory formation, whereas HSP70 is involved in stress response, we investigated whether these differences in CREB1 and HSP70 mRNA levels would reflect differences in predator-induced learning (e.g., configural learning). We found that only W snails formed configural learning memory, whereas Margo snails did not. Thus, while both the strains molecularly respond to the CE by upregulating the serotoninergic system, only W snails behaviorally recognize CE as a threat and, therefore, form configural learning.


Asunto(s)
Aprendizaje , Conducta Predatoria , Animales , Conducta Predatoria/fisiología , Odorantes , Serotonina/metabolismo , Lymnaea
11.
J Exp Biol ; 226(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232484

RESUMEN

Nutritional status plays an important role in cognitive functioning, but there is disagreement on the role that food deprivation plays in learning and memory. In this study, we investigated the behavioral and transcriptional effects induced by different lengths of food deprivation: 1 day, which is a short time period of food deprivation, and 3 days, which is an 'intermediate' level of food deprivation. Snails were subjected to different feeding regimens and then trained for operant conditioning of aerial respiration, where they received a single 0.5 h training session followed by a long-term memory (LTM) test 24 h later. Immediately after the memory test, snails were killed and the expression levels of key genes for neuroplasticity, energy balance and stress response were measured in the central ring ganglia. We found that 1 day of food deprivation was not sufficient to enhance snails' LTM formation and subsequently did not result in any significant transcriptional effects. However, 3 days of food deprivation resulted in enhanced LTM formation and caused the upregulation of neuroplasticity and stress-related genes and the downregulation of serotonin-related genes. These data provide further insight into how nutritional status and related molecular mechanisms impact cognitive function.


Asunto(s)
Aprendizaje , Lymnaea , Animales , Lymnaea/fisiología , Memoria a Largo Plazo/fisiología , Condicionamiento Operante/fisiología , Privación de Alimentos/fisiología
12.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240042

RESUMEN

Cognitive impairment in schizophrenia remains a clinically and pharmacologically unsolved challenge. Clinical and preclinical studies have revealed that the concomitant reduction in dysbindin (DYS) and dopamine receptor D3 functionality improves cognitive functions. However, the molecular machinery underlying this epistatic interaction has not yet been fully elucidated. The glutamate NMDA receptors and the neurotrophin BDNF, with their established role in promoting neuroplasticity, may be involved in the complex network regulated by the D3/DYS interaction. Furthermore, as inflammation is involved in the etiopathogenesis of several psychiatric diseases, including schizophrenia, the D3/DYS interaction may affect the expression levels of pro-inflammatory cytokines. Thus, by employing mutant mice bearing selective heterozygosis for D3 and/or DYS, we provide new insights into the functional interactions (single and synergic) between these schizophrenia susceptibility genes and the expression levels of key genes for neuroplasticity and neuroinflammation in three key brain areas for schizophrenia: the prefrontal cortex, striatum, and hippocampus. In the hippocampus, the epistatic interaction between D3 and DYS reversed to the wild-type level the downregulated mRNA levels of GRIN1 and GRIN2A were observed in DYS +/- and D3 +/- mice. In all the areas investigated, double mutant mice had higher BDNF levels compared to their single heterozygote counterparts, whereas D3 hypofunction resulted in higher pro-inflammatory cytokines. These results may help to clarify the genetic mechanisms and functional interactions involved in the etiology and development of schizophrenia.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptores de Dopamina D3 , Ratones , Animales , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Disbindina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Plasticidad Neuronal/genética
13.
Physiol Behav ; 263: 114137, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841323

RESUMEN

Food is not only necessary for our survival but also elicits pleasure. However, when a novel food is followed sometime later by nausea or sickness animals form a long-lasting association to avoid that food. This phenomenon is called the 'Garcia effect'. We hypothesized that lipopolysaccharide (LPS) could be used as the sickness-inducing stimulus to produce a Garcia-like effect in inbred and wild populations of Lymnaea stagnalis. We first demonstrated that the injection of 25 µg (6.25 µg/mL) of Escherichia coli-derived LPS serotype O127:B8 did not by itself alter snails' feeding behavior. Then we showed that the presentation of a novel appetitive stimulus (i.e., carrot slurry) and LPS resulted in a taste-specific and long-lasting feeding suppression (i.e., the Garcia-like effect). We also found strain-specific variations in the duration of the long-term memory (LTM). That is, while the LTM for the Garcia-like effect in W-strain snails persisted for 24h, LTM persisted for 48h in freshly collected Margo snails and their F1 offspring. Finally, we demonstrated that the exposure to a non-steroidal anti-inflammatory drug, aspirin (acetylsalicylic acid) before the LPS injection prevented both the LPS-induced sickness state and the Garcia-like effect from occurring. The results of this study may pave the way for new research that aims at (1) uncovering the conserved molecular mechanisms underlying the Garcia-like effect, (2) understanding how cognitive traits vary within and between species, and (3) creating a holistic picture of the complex dialogue between the immune and central nervous systems.


Asunto(s)
Lipopolisacáridos , Memoria , Animales , Lipopolisacáridos/farmacología , Lymnaea/fisiología , Gusto/fisiología , Memoria a Largo Plazo , Condicionamiento Operante
14.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719249

RESUMEN

In this Commentary, we shed light on the use of invertebrates as model organisms for understanding the causal and conserved mechanisms of learning and memory. We provide a condensed chronicle of the contribution offered by mollusks to the studies on how and where the nervous system encodes and stores memory and describe the rich cognitive capabilities of some insect species, including attention and concept learning. We also discuss the use of planarians for investigating the dynamics of memory during brain regeneration and highlight the role of stressful stimuli in forming memories. Furthermore, we focus on the increasing evidence that invertebrates display some forms of emotions, which provides new opportunities for unveiling the neural and molecular mechanisms underlying the complex interaction between stress, emotions and cognition. In doing so, we highlight experimental challenges and suggest future directions that we expect the field to take in the coming years, particularly regarding what we, as humans, need to know for preventing and/or delaying memory loss. This article has an associated ECR Spotlight interview with Veronica Rivi.


Asunto(s)
Invertebrados , Aprendizaje , Animales , Humanos , Invertebrados/fisiología , Cognición/fisiología , Encéfalo/fisiología , Emociones/fisiología
15.
Brain Behav Immun ; 107: 385-396, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400332

RESUMEN

Mounting evidence suggests a link between gut microbiota abnormalities and post-traumatic stress disorder (PTSD). However, whether and how the gut microbiota influences PTSD susceptibility is poorly understood. Here using the arousal-based individual screening model, we provide evidence for pre-trauma and post-trauma gut microbiota alterations in susceptible mice exhibiting persistent PTSD-related phenotypes. A more in-depth analysis revealed an increased abundance of bacteria affecting brain processes including myelination, and brain systems like the dopaminergic neurotransmission. Because dopaminergic dysfunctions play a key role in the pathophysiological mechanisms subserving PTSD, we assessed whether these alterations in gut microbiota composition could be associated with abnormal levels of metabolites inducing dopaminergic dysfunctions. We found high levels of the l-tyrosine-derived metabolite p-cresol exclusively in the prefrontal cortex of susceptible mice. We further uncovered abnormal levels of dopamine and DOPAC, together with a detrimental increase of dopamine D3 receptor expression, exclusively in the prefrontal cortex of susceptible mice. Conversely, we observed either resilience mechanisms aimed at counteracting these p-cresol-induced dopaminergic dysfunctions or myelination-related resilience mechanisms only in the prefrontal cortex of resilient mice. These findings reveal that gut microbiota abnormalities foster trauma susceptibility and thus it may represent a promising target for therapeutic interventions.


Asunto(s)
Dopamina , Ratones , Animales
16.
Neuroendocrinology ; 113(4): 406-422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36223719

RESUMEN

INTRODUCTION: The Garcia effect, a solid learning paradigm, was used to investigate the molecular and behavioral effects induced by different lengths of fasting on the cognitive functions in the pond snail Lymnaea stagnalis, a valid model system. METHODS: Three experimental groups were used: moderately hungry snails, food-deprived for 1 day (D1 snails), severely hungry snails (D5 snails), fasting for 5 days, and satiated snails with ad libitum access to food (AL snails). In the Garcia effect, a single pairing of an appetitive stimulus with a heat stressor results in a learned taste-specific negative hedonic shift. D5 snails were injected with bovine insulin and D1 snails with the insulin receptor antibody (Ab). As a control group, AL snails were injected with saline. Gene expression analyses were performed by real-time PCR in snails' central nervous system (CNS). RESULTS: AL snails are "average learners," D1 snails are the best performers, whereas the D5 ones do not show the Garcia effect. Severely fasting snails injected with insulin 3 h before the training procedure show the Garcia effect, whereas injecting 1-day fasting snails with insulin receptor Ab blocks their ability to express memory. The differences in memory performances are associated with changes in the expression levels of selected targets involved in neuronal plasticity, energy homeostasis, and stress response. DISCUSSION: Our results suggest that short-term fasting creates an optimal internal state in L. stagnalis' CNS, allowing a spike in insulin release and an upregulation of genes involved in neuroplasticity. Long-term fasting, instead, upregulates genes involved in energy homeostasis and animal survival.


Asunto(s)
Lymnaea , Gusto , Animales , Bovinos , Lymnaea/fisiología , Gusto/fisiología , Receptor de Insulina/genética , Receptor de Insulina/farmacología , Reacción de Prevención/fisiología , Insulina/farmacología , Ayuno , Cognición
17.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1573-1585, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36100758

RESUMEN

By employing a reductionistic (but not simplistic) approach using an established invertebrate model system, the pond snail Lymnaea stagnalis, we investigated whether (1) lipopolysaccharide (LPS)-induced inflammation would cause a sickness state and impair cognitive function, and-if so-(2) would aspirin (acetylsalicylic acid-ASA) restore the impaired cognition. To test our hypotheses, we first determined if the injection of 25 mg (6.25 µg/mL) of Escherichia coli-derived LPS serotype O127:B8 altered homeostatic behavior, aerial respiration, and then determined if LPS altered memory formation when this behavior was operantly conditioned. Next, we determined if ASA altered the LPS-induced changes in both aerial respiration and cognitive functions. LPS induced a sickness state that increased aerial respiration and altered the ability of snails to form or recall long-term memory. ASA reverted the LPS-induced sickness state and thus allowed long-term memory both to be formed and recalled. We confirmed our hypotheses and provided the first evidence in an invertebrate model system that an injection of LPS results in a sickness state that obstructs learning and memory, and this impairment can be prevented by a non-steroidal anti-inflammatory.


Asunto(s)
Lipopolisacáridos , Memoria , Animales , Lipopolisacáridos/toxicidad , Condicionamiento Operante , Aspirina/farmacología , Lymnaea , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico
18.
Biol Bull ; 243(1): 38-43, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36108033

RESUMEN

AbstractAcute extreme heat events are increasing in frequency and intensity. Understanding their effects on ectothermic organisms' homeostasis is both important and urgent. In this study we found that the exposure to an acute heat shock (30 °C for 1 hour) repeated for a seven-day period severely suppressed the feeding behavior of laboratory-inbred (W-strain) Lymnaea stagnalis, whereas the first-generation offspring of freshly collected wild (F1 D-strain) snails raised and maintained under similar laboratory conditions did not show any alterations. The W-strain snails might have inadvertently been selected against heat tolerance since they were first brought into the laboratory many (∼70) years ago. We also posit that the F1 D-strain snails do not perceive the heat shock as a sufficient stressor to alter their feeding response because their parental populations in wild environments have repeatedly experienced temperature fluctuations, thus becoming more tolerant and resilient to heat. The different responses exhibited by two strains of the same species highlight the importance of selecting the most appropriate strain for addressing questions about the impacts of global warming on organisms' physiology and behavior.


Asunto(s)
Condicionamiento Operante , Lymnaea , Animales , Lymnaea/fisiología
19.
Neurotoxicology ; 92: 61-66, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35907516

RESUMEN

Fluoride (F-), has been found to affect learning and memory in several species. In this study, we exposed an F--naïve, inbred strain of Lymnaea stagnalis to a concentration of F- similar to that naturally occurring in wild ponds. We found that the exposure to F- before the configural learning procedure obstructs the memory formation and blocks the configural learning-induced upregulation of CREB1, GRIN1, and HSP70 in snails' central ring ganglia. Along with altering the mRNA levels of these key genes for memory formation, a single acute F- exposure also upregulates Cytochrome c Oxidase, a major regulatory enzyme of the electron transport chain, which plays direct or indirect roles in reactive oxygen species production. As the central nervous system is sensitive to oxidative stress and consistent with previous studies from mammals, our results suggest a potential role of oxidative stress in memory impairment. To our knowledge, this is the first study investigating the neuronal mechanism of memory impairment in an invertebrate species that is exposed to natural F- levels.


Asunto(s)
Fluoruros , Lymnaea , Animales , Sistema Nervioso Central , Complejo IV de Transporte de Electrones , Fluoruros/toxicidad , Lymnaea/fisiología , Mamíferos , Memoria a Largo Plazo/fisiología , ARN Mensajero , Especies Reactivas de Oxígeno
20.
Phytother Res ; 36(5): 2246-2263, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35393641

RESUMEN

Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and ß-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.


Asunto(s)
Cannabidiol , Cannabis , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Citocinas/metabolismo , Endocannabinoides/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Microglía , FN-kappa B/metabolismo , Receptor Cannabinoide CB2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA