Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Immunol ; 15: 1135490, 2024.
Article En | MEDLINE | ID: mdl-38410512

Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.


Complement Factor H , Complement System Proteins , Humans , Complement Factor H/metabolism , Complement Activation
3.
J Biol Chem ; 298(6): 101985, 2022 06.
Article En | MEDLINE | ID: mdl-35483450

Ecotin is a homodimeric serine protease inhibitor produced by many commensal and pathogenic microbes. It functions as a virulence factor, enabling survival of various pathogens in the blood. The ecotin dimer binds two protease molecules, and each ecotin protomer has two protease-binding sites: site1 occupies the substrate-binding groove, whereas site2 engages a distinct secondary region. Owing to the twofold rotational symmetry within the ecotin dimer, sites 1 and 2 of a protomer bind to different protease molecules within the tetrameric complex. Escherichia coli ecotin inhibits trypsin-like, chymotrypsin-like, and elastase-like enzymes, including pancreatic proteases, leukocyte elastase, key enzymes of blood coagulation, the contact and complement systems, and other antimicrobial cascades. Here, we show that mannan-binding lectin-associated serine protease-1 (MASP-1) and MASP-2, essential activators of the complement lectin pathway, and MASP-3, an essential alternative pathway activator, are all inhibited by ecotin. We decipher in detail how the preorganization of site1 and site2 within the ecotin dimer contributes to the inhibition of each MASP enzyme. In addition, using mutated and monomeric ecotin variants, we show that site1, site2, and dimerization contribute to inhibition in a surprisingly target-dependent manner. We present the first ecotin:MASP-1 and ecotin:MASP-2 crystal structures, which provide additional insights and permit structural interpretation of the observed functional results. Importantly, we reveal that monomerization completely disables the MASP-2-inhibitory, MASP-3-inhibitory, and lectin pathway-inhibitory capacity of ecotin. These findings provide new opportunities to combat dangerous multidrug-resistant pathogens through development of compounds capable of blocking ecotin dimer formation.


Escherichia coli Proteins/chemistry , Mannose-Binding Protein-Associated Serine Proteases/chemistry , Periplasmic Proteins/chemistry , Binding Sites , Complement Pathway, Mannose-Binding Lectin , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Lectins/genetics , Lectins/metabolism , Mannose-Binding Lectin/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Peptide Hydrolases/metabolism , Periplasmic Proteins/metabolism , Protein Subunits
4.
Front Immunol ; 12: 642860, 2021.
Article En | MEDLINE | ID: mdl-33995361

Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1ß, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.


COVID-19/immunology , Complement Activation , Cytokine Release Syndrome/immunology , Interleukin-10/immunology , Interleukin-6/immunology , Leukocytes, Mononuclear/immunology , Models, Immunological , SARS-CoV-2/immunology , COVID-19/pathology , Complement Factor H/immunology , Cytokine Release Syndrome/pathology , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology
...