Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612571

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Bone Neoplasms , Calcium Radioisotopes , Isothiocyanates , Osteosarcoma , TRPA1 Cation Channel , TRPV Cation Channels , Animals , Humans , Mice , Bone Neoplasms/genetics , Capsaicin/pharmacology , Osteosarcoma/genetics , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article En | MEDLINE | ID: mdl-36982563

Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αß-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15-20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.


Astrocytes , Hyperalgesia , Mice , Male , Female , Animals , Hyperalgesia/metabolism , Astrocytes/metabolism , Microglia/metabolism , Interleukin-1/metabolism , Pain/metabolism , Brain/metabolism
3.
Front Oncol ; 11: 685297, 2021.
Article En | MEDLINE | ID: mdl-34336669

There is growing interest in the role of nerve-driven mechanisms in tumorigenesis and tumor growth. Capsaicin-sensitive afferents have been previously shown to possess antitumoral and immune-regulatory properties, the mechanism of which is currently poorly understood. In this study, we have assessed the role of these terminals in the triple negative 4T1 orthotopic mouse model of breast cancer. The ultrapotent capsaicin-analogue resiniferatoxin (RTX) was used for the selective, systemic desensitization of capsaicin-sensitive afferents. Growth and viability of orthotopically implanted 4T1 tumors were measured by caliper, in vivo MRI, and bioluminescence imaging, while tumor vascularity and protease enzyme activity were assessed using fluorescent in vivo imaging. The levels of the neuropeptides Calcitonin Gene-Related Peptide (CGRP), Substance P (SP), and somatostatin were measured from tumor tissue homogenates using radioimmunoassay, while tumor structure and peritumoral inflammation were evaluated by conventional use of CD31, CD45 and CD3 immunohistology. RTX-pretreated mice demonstrated facilitated tumor growth in the early phase measured using a caliper, which was coupled with increased tumor vascular leakage demonstrated using fluorescent vascular imaging. The tumor size difference dissipated by day seven. The MRI tumor volume was similar, while the intratumoral protease enzyme activity measured by fluorescence imaging was also comparable in RTX-pretreated and non-pretreated animals. Tumor viability or immunohistopathological profile was measured using CD3, CD31, and CD45 stains and did not differ significantly from the non-pretreated control group. Intratumoral somatostatin, CGRP, and SP levels were similar in both groups. Our results underscore the beneficial, antitumoral properties of capsaicin sensitive nerve terminals in this aggressive model of breast cancer, which is presumed to be due to the inhibition of tumor vascular bed disruption. The absence of any difference in intratumoral neuropeptide levels indicates non-neural sources playing a substantial part in their expression.

4.
Front Physiol ; 10: 624, 2019.
Article En | MEDLINE | ID: mdl-31178756

It is known that non-steroidal anti-inflammatory drugs increase cardiovascular (CV) morbidity and mortality. In this study, we examined whether a novel anti-inflammatory drug, bradykinin B1 receptor antagonist (FGY-1153) treatment could influence the development of hypertensive organ damages in spontaneously hypertensive rats (SHR). SHRs were treated with low (FGY-120) or high dose FGY-1153 (FGY-400) and with placebo (Control) for 26 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY). Body weight, food consumption and blood pressure were measured regularly. Echocardiography was performed at the beginning and at the end of the study. Light and electron microscopic analysis of heart and great vessels were performed, and the extent of fibrotic areas was measured. The phosphorylation state of prosurvival Akt-1/glycogen synthase kinase (GSK)-3ß pathway and the activation of signaling factors playing part in the fibrotic processes - mitogen activated protein kinases (MAPKs), and TGF-ß/Smad2 - were monitored using Western-blot. Body weight and food consumption as well as the elevated blood pressure in SHRs was not influenced by FGY-1153 treatment. However, both doses of FGY-1153 treatment decreased left ventricular (LV) hypertrophy and diastolic dysfunction in hypertensive animals. Moreover systolic LV function was also preserved in FGY-120 group. Increased intima-media thickness and interstitial fibrosis were not significantly diminished in great vessels. FGY-1153 treatment inhibited the expression of TGFß and the phosphorylation of SMAD2 in the heart. Our results suggest that the tested novel anti-inflammatory compound has no deleterious effect on CV system, moreover it exerts moderate protective effect against the development of hypertensive cardiopathy.

5.
Pharmacol Res ; 131: 231-243, 2018 05.
Article En | MEDLINE | ID: mdl-29438782

Semicarbazide-sensitive amine oxidase (SSAO) produces tissue irritants by deamination of primary amines, which activate transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly on nociceptors. Since there are no data about its functions in pain, we studied the effects and mechanisms of action of our novel SSAO inhibitor and dual TRPA1/TRPV1 antagonist multi-target drug SZV 1287 in different pain models. Acute chemonociception was induced by TRPV1 and TRPA1 activation (resiniferatoxin and formalin, respectively), chronic arthritis by K/BxN serum transfer, traumatic mononeuropathy by sciatic nerve ligation. SZV 1287 (20 mg/kg i.p.) was investigated in C57BL/6J wildtype (WT), TRPA1- (TRPA1-/-) and TRPV1-deficient (TRPV1-/-) mice. Paw mechanonociception was measured by aesthesiometry, thermonociception by hot plate, nocifensive behavior by licking duration, volume by plethysmometry, myeloperoxidase activity by luminescence and plasma extravasation by fluorescence imaging, glia activation in pain-related brain regions by immunohistochemistry. SZV 1287 significantly inhibited both TRPA1 and TRPV1 activation-induced acute chemonociception and hyperalgesia. In K/BxN arthritis, daily SZV 1287 injections significantly decreased hyperalgesia, L4-L6 spinal dorsal horn microgliosis, edema and myeloperoxidase activity. SZV 1287-evoked antihyperalgesic and anti-edema effects were absent in TRPV1-/-, and remarkably reduced in TRPA1-/- mice. In contrast, myeloperoxidase-inhibitory effect was absent in TRPA1-/-, but not in TRPV1-/- animals. Acute SZV 1287 administration resulted in approximately 50% significant reduction of neuropathic hyperalgesia 7 days after nerve ligation, which was not observed in either TRPA1-/- or TRPV1-/- mice. SZV 1287 inhibits chronic inflammatory and neuropathic pain via TRPV1 and TRPA1/TRPV1 activation, respectively, highlighting its drug developmental potential.


Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Analgesics/therapeutic use , Chronic Pain/drug therapy , Enzyme Inhibitors/therapeutic use , Oxazoles/therapeutic use , Oximes/therapeutic use , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism , Amine Oxidase (Copper-Containing)/metabolism , Analgesics/pharmacology , Animals , Chronic Pain/genetics , Chronic Pain/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Gene Deletion , Male , Mice, Inbred C57BL , Neuralgia/drug therapy , Neuralgia/genetics , Neuralgia/metabolism , Oxazoles/pharmacology , Oximes/pharmacology , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics
6.
Brain Res Bull ; 107: 61-8, 2014 Aug.
Article En | MEDLINE | ID: mdl-25048146

Some members of the RFamide peptide family are associated with feeding in rodents. For example, neuropeptide FF and prolactin-releasing peptide cause anorexigenic, while 26RFa and QRFP result in orexigenic effects. I.c.v. microinjection of RFamide-related peptide-3 (RFRP-3) facilitates feeding. Feeding related effects of RFRP-3, however, have not been studied after direct brain microinjections in rats. The central part of amygdala (CeA) is essentially involved in the regulation of feeding and body weight. RFRP-3 positive nerve cells were detected in the rat hypothalamus and RFRP-3 immunoreactive fibers were identified in the CeA. RFRP analogs bind with relatively high affinity to the NPFF1 and NPFF2 receptors (NPFF-R). RFRP-3 has potent activity for NPFF-1 that is expressed in the CeA. To evaluate the role of RFRP-3 in feeding regulation rats were microinjected with different doses of RFRP-3 and their food intake were quantified over a 60 min period. Liquid food intake of male Wistar rats was measured after bilateral intraamygdalar administration of RFRP-3 (25, 50, 100 or 200 ng/side, RFRP-3 dissolved in 0.15M sterile NaCl/0.4 µl, respectively). The 50 ng and 100 ng doses of RFRP-3 microinjections resulted in significant decrease of food intake. Twenty-five and 200 ng had no effect. Food intake decreasing effect of RFRP-3 was eliminated by NPFF-R antagonist RF9 pretreatment. In open-field test effective doses of RFRP-3 did not modify spontaneous locomotor activity and general behavior of animals did not change. Our results are the first reporting that RFRP-3 injected to the CeA resulted in a decrease of liquid food consumption. This is a receptor-linked effect because it was eliminated by NPFF-R antagonist.


Central Amygdaloid Nucleus/physiology , Eating/physiology , Hypothalamic Hormones/physiology , Animals , Central Amygdaloid Nucleus/drug effects , Eating/drug effects , Hypothalamic Hormones/administration & dosage , Hypothalamic Hormones/pharmacology , Male , Microinjections , Motor Activity/drug effects , Rats , Rats, Wistar
...