Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Plant Sci ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39034223

RESUMEN

Fruit development is essential for flowering plants' reproduction and a significant food source. Climate change threatens fruit yields due to its impact on pollination and fertilization processes, especially vulnerable to extreme temperatures, insufficient light, and pollinator decline. Parthenocarpy, the development of fruit without fertilization, offers a solution, ensuring yield stability in adverse conditions and enhancing fruit quality. Parthenocarpic fruits not only secure agricultural production but also exhibit improved texture, appearance, and shelf life, making them desirable for food processing and other applications. Recent research unveils the molecular mechanisms behind parthenocarpy, implicating transcription factors (TFs), noncoding RNAs, and phytohormones such as auxin, gibberellin (GA), and cytokinin (CK). Here we review recent findings, construct regulatory models, and identify areas for further research.

2.
Nat Commun ; 15(1): 4877, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849342

RESUMEN

In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.


Asunto(s)
Elementos Transponibles de ADN , Etilenos , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Elementos Transponibles de ADN/genética , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Transducción de Señal/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Mutación
4.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557190

RESUMEN

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Asunto(s)
Flores , Proteínas de Dominio MADS , Pisum sativum , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Guisantes/genética
5.
Plant Cell Physiol ; 65(7): 1149-1159, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38581668

RESUMEN

Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.


Asunto(s)
Micorrizas , Proteínas de Plantas , Raíces de Plantas , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Micorrizas/fisiología , Quitina/metabolismo , Lipopolisacáridos/farmacología , Oligosacáridos/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/metabolismo , Quitosano/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/enzimología
6.
Hortic Res ; 11(1): uhad256, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269294

RESUMEN

Podosphaera xanthii is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In Cucumis melo, the Pm-w resistance gene, which confers resistance to P. xanthii, is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs). We used positional cloning and transgenesis, to isolate the Pm-wWMR 29 gene encoding a coiled-coil NLR (CC-NLR). Pm-wWMR 29 conferred high level of resistance to race 1 of PM and intermediate level of resistance to race 3 of PM. Pm-wWMR 29 turned out to be a homolog of the Aphis gossypii resistance gene Vat-1PI 161375. We confirmed that Pm-wWMR 29 did not confer resistance to aphids, while Vat-1PI 161375 did not confer resistance to PM. We showed that both homologs were included in a highly diversified cluster of NLRs, the Vat cluster. Specific Vat-1PI 161375 and Pm-wWMR 29 markers were present in 10% to 13% of 678 accessions representative of wild and cultivated melon types worldwide. Phylogenic reconstruction of 34 protein homologs of Vat-1PI 161375 and Pm-wWMR 29 identified in 24 melon accessions revealed an ancestor with four R65aa-a specific motif in the LRR domain, evolved towards aphid and virus resistance, while an ancestor with five R65aa evolved towards PM resistance. The complexity of the cluster comprising the Vat/Pm-w genes and its diversity in melon suggest that Vat homologs may contribute to the recognition of a broad range of yet to be identified pests and pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA