Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Biol Macromol ; 261(Pt 1): 129692, 2024 Mar.
Article En | MEDLINE | ID: mdl-38278398

H2O2-modified graphite schist (GS) and sodium alginate (SA) interface was loaded by Fe3O4 nanoparticles (MNPs) to prepare a magnetic biosorbent that was employed in removing Mn(VII) from solutions. The prepared GS/SA/MNPs adsorbent was investigated using a variety of techniques, including elemental mapping, TEM, XPS, FTIR, FESEM, EDX, XRD, XPS, and zeta potential. An experimental study supported by statistical physics calculations was carried out to obtain a new outline of the Mn(VII) uptake mechanism. The classical Freundlich and the statistical physical double-layer models adequately described the Mn(VII) uptake process at pH 3.0 and a temperature of 25-55 °C. The removed number of Mn ions (such as Mn+7 and Mn+2) per GS/SA/MNPs active site ranged from 0.70 to 0.84, indicating a mixed adsorption orientation driven by surface complexation and attraction forces mechanisms. The adsorption energies (∆E) calculated by the double-layer model ranged from 18.79 to 24.94 kJ/mol, suggesting that the interaction between Mn(VII) and GS/SA/MNPs was controlled by physical forces. Increasing the adsorption capacity at saturation (Qsat) from 333.14 to 369.52 mg/g with temperature proposed an endothermic capture process. Thermodynamic functions clarified the viability and spontaneity of Mn(VII) uptake on the GS/SA/MNPs adsorbent.


Graphite , Water Pollutants, Chemical , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Alginates/chemistry , Hydrogen Peroxide , Adsorption , Magnetics , Magnetic Phenomena , Hydrogen-Ion Concentration , Kinetics
2.
Materials (Basel) ; 16(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37959473

This research investigates the long-term resilience of an environmentally friendly cement blend comprising Egyptian Ordinary Portland Cement OPC and Ground-Granulated Blast Furnace Slag GGBFS when exposed to a corrosive seawater environment. This scientific investigation explores the effects of exposure to seawater on various properties of cement pastes, encompassing parameters such as free lime content (FLC), chemically combined water content (CWC), bulk density (BD), total porosity (ϕ), total sulfate content, total chloride content, and compressive strength (CS). By contrast, Differential Thermal Analysis (DTA), FT-IR spectroscopy, and X-ray diffraction (XRD) analysis can be utilized to investigate the influence of exposure to seawater on the hydration products of GGBFS cement pastes over a period of up to one year. This analytical approach offers valuable insights into the alterations that occur in hydration products and their resilience when subjected to seawater conditions. The results obtained from this investigation reveal that all cement pastes incorporating GGBFS exhibit heightened resistance to deterioration in seawater, with slag cement containing 60 wt. % GGBFS and achieving a notable compressive strength of 85.7 Mpa after one year of immersion in seawater. These findings underscore the capacity of these cement blends to effectively withstand challenges in durability in marine environments.

...