Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 14: 1213792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637902

RESUMEN

A number of case studies describing hypnotherapy in the treatment of anxiety disorder patients have already been published. Only a few randomized controlled trials (RCTs) investigated the efficacy of hypnotherapy but focused mainly on symptoms rather than specific mental disorders. The goal of this study was to investigate whether hypnotherapy (HT) was superior to a waitlist control group (WL) in the reduction of agoraphobia-related symptoms. Further goals were to report the feasibility of hypnotherapy as well as attrition and completion rates and detect (epi-)genetic variables, which might play a role in treatment outcome. This pilot study was based on a monocentric two-armed randomized controlled rater-blind clinical trial that was conducted between 2018 and 2020 with a waitlist control group. A total of 36 patients diagnosed with agoraphobia were randomized to either HT or WL. Patients in HT received individual outpatient treatment with hypnotherapy with 8 to 12 sessions for a period of 3 months. Patients in WL received HT after 3 months. Agoraphobia-related symptoms were assessed at baseline, after the treatment, and 3 months later in both groups with a clinician rating. The primary hypothesis concerning the difference between groups in the individual percentage symptom reduction could be confirmed in the intention-to-treat, not the per-protocol sample. Additionally, we applied repeated-measures analyses of variance and found a higher symptom decrease in HT compared with WL patients in three of the five imputed datasets. The dropout rate was low, and satisfaction with the treatment was high. HT patients experienced a strong symptom reduction after receiving hypnotherapy. WL patients improved slightly during the waiting period. The COMT Val108/158Met genotype had an effect on the agoraphobia-related symptoms as well as on COMT DNA methylation levels. This is the first study to indicate that hypnotherapy performed better than a waitlist control group regarding the reduction in anxiety symptoms in an RCT. Future studies should confirm the efficacy of hypnotherapy and compare the treatment with a standard treatment for anxiety disorders in a larger trial. Future studies should also investigate whether hypnotic susceptibility is associated with COMT Val108/158Met genotype and could predict treatment success for HT. Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/NCT03684577, identifier: NCT03684577.

2.
PLoS Biol ; 17(6): e3000334, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31206517

RESUMEN

Escherichia coli represents a classical intestinal gram-negative commensal. Despite this commensalism, different E. coli strains can mediate disparate immunogenic properties in a given host. Symbiotic E. coli strains such as E. coli Nissle 1917 (EcN) are attributed beneficial properties, e.g., promotion of intestinal homeostasis. Therefore, we aimed to identify molecular features derived from symbiotic bacteria that might help to develop innovative therapeutic alternatives for the treatment of intestinal immune disorders. This study was performed using the dextran sodium sulphate (DSS)-induced colitis mouse model, which is routinely used to evaluate potential therapeutics for the treatment of Inflammatory Bowel Diseases (IBDs). We focused on the analysis of flagellin structures of different E. coli strains. EcN flagellin was found to harbor a substantially longer hypervariable region (HVR) compared to other commensal E. coli strains, and this longer HVR mediated symbiotic properties through stronger activation of Toll-like receptor (TLR)5, thereby resulting in interleukin (IL)-22-mediated protection of mice against DSS-induced colitis. Furthermore, using bone-marrow-chimeric mice (BMCM), CD11c+ cells of the colonic lamina propria (LP) were identified as the main mediators of these flagellin-induced symbiotic effects. We propose flagellin from symbiotic E. coli strains as a potential therapeutic to restore intestinal immune homeostasis, e.g., for the treatment of IBD patients.


Asunto(s)
Escherichia coli/metabolismo , Flagelina/genética , Simbiosis/genética , Animales , Colitis/inducido químicamente , Colitis/inmunología , Modelos Animales de Enfermedad , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Femenino , Flagelina/metabolismo , Mucosa Intestinal , Intestinos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Simbiosis/fisiología , Receptor Toll-Like 5/metabolismo
3.
Front Immunol ; 9: 2114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283451

RESUMEN

Insects and mammals share evolutionary conserved innate immune responses to maintain intestinal homeostasis. We investigated whether the larvae of the greater wax moth Galleria mellonella may be used as an experimental organism to distinguish between symbiotic Bacteroides vulgatus and pathobiotic Escherichia coli, which are mammalian intestinal commensals. Oral application of the symbiont or pathobiont to G. mellonella resulted in clearly distinguishable innate immune responses that could be verified by analyzing similar innate immune components in mice in vivo and in vitro. The differential innate immune responses were initiated by the recognition of bacterial components via pattern recognition receptors. The pathobiont detection resulted in increased expression of reactive oxygen and nitrogen species related genes as well as antimicrobial peptide gene expression. In contrast, the treatment/application with symbiotic bacteria led to weakened immune responses in both mammalian and insect models. As symbionts and pathobionts play a crucial role in development of inflammatory bowel diseases, we hence suggest G. mellonella as a future replacement organism in inflammatory bowel disease research.


Asunto(s)
Inmunidad Innata/inmunología , Intestinos/inmunología , Invertebrados/inmunología , Mariposas Nocturnas/inmunología , Simbiosis/inmunología , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Humanos , Intestinos/parasitología , Invertebrados/fisiología , Ratones , Mariposas Nocturnas/fisiología , Filogenia , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Virulencia/inmunología , beta-Defensinas/clasificación , beta-Defensinas/genética , beta-Defensinas/inmunología
4.
Gut Microbes ; 9(1): 1-12, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-28686482

RESUMEN

The Gram negative intestinal symbiont Bacteroides vulgatus mpk is able to prevent from induction of colonic inflammation in Rag1-/- mice and promotes immune balance in Il2-/- mice. These inflammation-silencing effects are associated with B. vulgatus mpk-mediated induction of semi-mature dendritic cells, especially in the colonic lamina propria (cLP). However the beneficial interaction of bacteria with host immune cells is limited due to the existence of a large mucus layer covering the intestinal epithelium. How can intestinal bacteria overcome this physical barrier and contact the host immune system? One mechanism is the production of outer membrane vesicles (OMVs) via ubiquitous blebbing of the outer membrane. These proteoliposomes have the ability to traverse the mucus layer. Hence, OMVs play an important role in immunomodulation and the maintenance of a balanced gut microbiota. Here we demonstrate that the stimulation of bone marrow derived dendritic cells (BMDCs) with isolated OMVs originated from B. vulgatus mpk leads to the induction of a tolerant semi-mature phenotype. Thereby, microbe- associated molecular patterns (MAMPs) delivered by OMVs are crucial for the interaction and the resulting maturation of immune cells. Additional to the binding to host TLR4, a yet unknown ligand to TLR2 is indispensable for the conversion of immature BMDCs into a semi-mature state. Thus, crossing the epithelial mucus layer and directly contact host cells, OMV mediate cross-tolerance via the transport of various Toll-like receptor antigens. These features make OMVs to a key attribute of B. vulgatus mpk for a vigorous acellular prevention and treatment of systemic diseases.


Asunto(s)
Bacteroides/inmunología , Membrana Celular/ultraestructura , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Exosomas/metabolismo , Tolerancia Inmunológica , Animales , Bacteroides/metabolismo , Bacteroides/ultraestructura , Membrana Celular/metabolismo , Células Cultivadas , Escherichia coli/inmunología , Exosomas/inmunología , Células HEK293 , Humanos , Factores Inmunológicos/metabolismo , Interleucina-6/análisis , Ratones , Mutación , Transducción de Señal/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/análisis
6.
J Autoimmun ; 75: 82-95, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27484364

RESUMEN

Cathepsin S (CTSS) is a lysosomal protease whose activity regulation is important for MHC-II signaling and subsequent activation of CD4+ T cell mediated immune responses. Dysregulation of its enzymatic activity or enhanced secretion into extracellular environments is associated with the induction or progression of several autoimmune diseases. Here we demonstrate that commensal intestinal bacteria influence secretion rates and intracellular activity of host CTSS and that symbiotic bacteria, i.e. Bacteroides vulgatus mpk, may actively regulate this process and help to maintain physiological levels of CTSS activities in order to prevent from induction of pathological inflammation. The symbiont-controlled regulation of CTSS activity is mediated by anticipating reactive oxygen species induction in dendritic cells which, in turn, maintains cystatin C (CysC) monomer binding to CTSS. CysC monomers are potent endogenous CTSS inhibitors. This Bacteroides vulgatus caused and CysC dependent CTSS activity regulation is involved in the generation of tolerant intestinal dendritic cells contributing to prevention of T-cell mediated induction of colonic inflammation. Taken together, we demonstrate that symbionts of the intestinal microbiota regulate host CTSS activity and secretion and might therefore be an attractive approach to deal with CTSS associated autoimmune diseases.


Asunto(s)
Bacterias/inmunología , Catepsinas/inmunología , Microbioma Gastrointestinal/inmunología , Simbiosis/inmunología , Animales , Bacteroides/inmunología , Bacteroides/fisiología , Infecciones por Bacteroides/inmunología , Infecciones por Bacteroides/microbiología , Benzopiranos/farmacología , Western Blotting , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Carbamatos/farmacología , Catepsinas/antagonistas & inhibidores , Catepsinas/genética , Células Cultivadas , Colitis/inmunología , Colitis/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Microbioma Gastrointestinal/fisiología , Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Tolerancia Inmunológica/inmunología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Immunol Methods ; 432: 87-94, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26899824

RESUMEN

Cathepsin S (CTSS) is a eukaryotic protease mostly expressed in professional antigen presenting cells (APCs). Since CTSS activity regulation plays a role in the pathogenesis of various autoimmune diseases like multiple sclerosis, atherosclerosis, Sjögren's syndrome and psoriasis as well as in cancer progression, there is an ongoing interest in the reliable detection of cathepsin S activity. Various applications have been invented for specific detection of this enzyme. However, most of them have only been shown to be suitable for human samples, do not deliver quantitative results or the experimental procedure requires technical equipment that is not commonly available in a standard laboratory. We have tested a fluorogen substrate, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2, that has been described to specifically detect CTSS activities in human APCs for its potential use for mouse samples. We have modified the protocol and thereby offer a cheap, easy, reproducible and quick activity assay to detect CTSS activities in mouse APCs. Since most of basic research on CTSS is performed in mice, this method closes a gap and offers a possibility for reliable and quantitative CTSS activity detection that can be performed in almost every laboratory.


Asunto(s)
Células Presentadoras de Antígenos/enzimología , Catepsinas/metabolismo , Infecciones por Escherichia coli/enzimología , Colorantes Fluorescentes/metabolismo , Péptidos/metabolismo , Espectrometría de Fluorescencia , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/microbiología , Catepsinas/antagonistas & inhibidores , Catepsinas/deficiencia , Catepsinas/genética , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Hidrólisis , Leucina/análogos & derivados , Leucina/farmacología , Ratones Noqueados , Reproducibilidad de los Resultados , Especificidad por Sustrato , Factores de Tiempo
8.
Inflamm Bowel Dis ; 21(3): 507-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25647153

RESUMEN

BACKGROUND: Toll-like receptor (TLR) expression in patients with inflammatory bowel disease is increased when compared with healthy controls. However, the impact of TLR signaling during inflammatory bowel disease is not fully understood. METHODS: In this study, we used a murine model of acute phase inflammation in bone marrow chimeric mice to investigate in which cell type TLR2/4 signal induction is important in preventing intestinal inflammation and how intestinal dendritic cells are influenced. Mice were either fed with wild-type bacteria, able to initiate the TLR2/4 signaling cascade, or with mutant strains with impaired signal induction capacity. RESULTS: The induction of the TLR2/4 signal cascade in epithelial cells resulted in inflammation in bone marrow chimeric mice, whereas induction in hematopoietic cells had an opposed function. Furthermore, feeding of wild-type bacteria prevented disease; however, differing signal induction of bacteria had no effect on lamina propria dendritic cell activation. In contrast, functional TLR2/4 signals resulted in increased frequencies of CD103-expressing lamina propria and mesenteric lymph node dendritic cells, which were able to ameliorate disease. CONCLUSIONS: The TLR-mediated amelioration of disease, the increase in CD103-expressing cells, and the beneficial function of TLR signal induction in hematopoietic cells indicate that the increased expression of TLRs in patients with inflammatory bowel disease might result in counterregulation of the host and serve in preventing disease.


Asunto(s)
Antígenos CD/metabolismo , Colitis/prevención & control , Células Dendríticas/inmunología , Inflamación/prevención & control , Cadenas alfa de Integrinas/metabolismo , Intestinos/inmunología , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/fisiología , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli/fisiología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/patología , Femenino , Citometría de Flujo , Inflamación/etiología , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Am J Respir Crit Care Med ; 191(8): 914-23, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25632992

RESUMEN

RATIONALE: Patients with cystic fibrosis (CF) lung disease have chronic airway inflammation driven by disrupted balance of T-cell (Th17 and Th2) responses. Regulatory T cells (Tregs) dampen T-cell activation, but their role in CF is incompletely understood. OBJECTIVES: To characterize numbers, function, and clinical impact of Tregs in CF lung disease. METHODS: Tregs were quantified in peripheral blood and airway samples from patients with CF and from lung disease control patients without CF and healthy control subjects. The role of Pseudomonas aeruginosa and CF transmembrane conductance regulator (CFTR) in Treg regulation was analyzed by using in vitro and murine in vivo models. MEASUREMENTS AND MAIN RESULTS: Tregs were decreased in peripheral blood and airways of patients with CF compared with healthy controls or lung disease patients without CF and correlated positively with lung function parameters. Patients with CF with chronic P. aeruginosa infection had lower Tregs compared with patients with CF without P. aeruginosa infection. Genetic knockout, pharmacological inhibition, and P. aeruginosa infection studies showed that both P. aeruginosa and CFTR contributed to Treg dysregulation in CF. Functionally, Tregs from patients with CF or from Cftr(-/-) mice were impaired in suppressing conventional T cells, an effect that was enhanced by P. aeruginosa infection. The loss of Tregs in CF affected memory, but not naive Tregs, and manifested gradually with disease progression. CONCLUSIONS: Patients with CF who have chronic P. aeruginosa infection show an age-dependent, quantitative, and qualitative impairment of Tregs. Modulation of Tregs represents a novel strategy to rebalance T-cell responses, dampen inflammation, and ultimately improve outcomes for patients with infective CF lung disease.


Asunto(s)
Fibrosis Quística/complicaciones , Fibrosis Quística/inmunología , Infecciones por Pseudomonas/complicaciones , Linfocitos T Reguladores/inmunología , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Adulto Joven
10.
Infect Immun ; 82(11): 4681-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25156723

RESUMEN

Mutations in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) play an important role in the pathogenesis of Crohn's disease. NOD2 is an intracellular pattern recognition receptor (PRR) that senses bacterial peptidoglycan (PGN) structures, e.g., muramyl dipeptide (MDP). Here we focused on the effect of more-cross-linked, polymeric PGN fragments (PGNpol) in the activation of the innate immune system. In this study, the effect of combined NOD2 and Toll-like receptor 2 (TLR2) stimulation was examined compared to single stimulation of the NOD2 receptor alone. PGNpol species derived from a lipoprotein-containing Staphylococcus aureus strain (SA113) and a lipoprotein-deficient strain (SA113 Δlgt) were isolated. While PGNpol constitutes a combined NOD2 and TLR2 ligand, lipoprotein-deficient PGNpolΔlgt leads to activation of the immune system only via the NOD2 receptor. Murine bone marrow-derived dendritic cells (BMDCs), J774 cells, and Mono Mac 6 (MM6) cells were stimulated with these ligands. Cytokines (interleukin-6 [IL-6], IL-12p40, and tumor necrosis factor alpha [TNF-α]) as well as DC activation and maturation parameters were measured. Stimulation with PGNpolΔlgt did not lead to enhanced cytokine secretion or DC activation and maturation. However, stimulation with PGNpol led to strong cytokine secretion and subsequent DC maturation. These results were confirmed in MM6 and J774 cells. We showed that the NOD2-mediated activation of DCs with PGNpol was dependent on TLR2 costimulation. Therefore, signaling via both receptors leads to a more potent activation of the immune system than that with stimulation via each receptor alone.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Lipoproteínas/farmacología , Proteína Adaptadora de Señalización NOD2/metabolismo , Peptidoglicano/farmacología , Staphylococcus aureus/química , Receptor Toll-Like 2/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células Cultivadas , Células Dendríticas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Noqueados , Proteína Adaptadora de Señalización NOD2/genética , Peptidoglicano/química , Staphylococcus aureus/metabolismo , Receptor Toll-Like 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...