Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 240(6): 2372-2385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837235

RESUMEN

Glutamate decarboxylase (GAD) is a Ca2+ -calmodulin-activated, cytosolic enzyme that produces γ-aminobutyrate (GABA) as the committed step of the GABA shunt. This pathway bypasses the 2-oxoglutarate to succinate reactions of the tricarboxylic acid (TCA) cycle. GABA also accumulates during many plant stresses. We tested the hypothesis that AtGAD1 (At5G17330) facilitates Arabidopsis acclimation to Pi deprivation. Quantitative RT-PCR and immunoblotting revealed that AtGAD1 transcript and protein expression is primarily root-specific, but inducible at lower levels in shoots of Pi-deprived (-Pi) plants. Pi deprivation reduced levels of the 2-oxoglutarate dehydrogenase (2-OGDH) cofactor thiamine diphosphate (ThDP) in shoots and roots by > 50%. Growth of -Pi atgad1 T-DNA mutants was significantly attenuated relative to wild-type plants. This was accompanied by: (i) an > 60% increase in shoot and root GABA levels of -Pi wild-type, but not atgad1 plants, and (ii) markedly elevated anthocyanin and reduced free and total Pi levels in leaves of -Pi atgad1 plants. Treatment with 10 mM GABA reversed the deleterious development of -Pi atgad1 plants. Our results indicate that AtGAD1 mediates GABA shunt upregulation during Pi deprivation. This bypass is hypothesized to circumvent ThDP-limited 2-OGDH activity to facilitate TCA cycle flux and respiration by -Pi Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fósforo/metabolismo , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aclimatación , Aminobutiratos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Raíces de Plantas/metabolismo , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plants (Basel) ; 13(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202338

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first committed step of the oxidative pentose phosphate pathway (OPPP). Our recent phosphoproteomics study revealed that the cytosolic G6PD6 isozyme became hyperphosphorylated at Ser12, Thr13 and Ser18, 48 h following phosphate (Pi) resupply to Pi-starved (-Pi) Arabidopsis thaliana cell cultures. The aim of the present study was to assess whether G6PD6 phosphorylation also occurs in shoots or roots following Pi resupply to -Pi Arabidopsis seedlings, and to investigate its relationship with G6PD activity. Interrogation of phosphoproteomic databases indicated that N-terminal, multi-site phosphorylation of G6PD6 and its orthologs is quite prevalent. However, the functions of these phosphorylation events remain unknown. Immunoblotting with an anti-(pSer18 phosphosite-specific G6PD6) antibody confirmed that G6PD6 from Pi-resupplied, but not -Pi, Arabidopsis cell cultures or seedlings (i.e., roots) was phosphorylated at Ser18; this correlated with a significant increase in extractable G6PD activity, and biomass accumulation. Peptide kinase assays of Pi-resupplied cell culture extracts indicated that G6PD6 phosphorylation at Ser18 is catalyzed by a Ca2+-dependent protein kinase (CDPK), which correlates with the 'CDPK-like' targeting motif that flanks Ser18. Our results support the hypothesis that N-terminal phosphorylation activates G6PD6 to enhance OPPP flux and thus the production of reducing power (i.e., NADPH) and C-skeletons needed to establish the rapid resumption of growth that ensures Pi-resupply to -Pi Arabidopsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA