Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3409, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296131

RESUMEN

Recent analyses have found waves of neural activity traveling across entire visual cortical areas in awake animals. These traveling waves modulate the excitability of local networks and perceptual sensitivity. The general computational role of these spatiotemporal patterns in the visual system, however, remains unclear. Here, we hypothesize that traveling waves endow the visual system with the capacity to predict complex and naturalistic inputs. We present a network model whose connections can be rapidly and efficiently trained to predict individual natural movies. After training, a few input frames from a movie trigger complex wave patterns that drive accurate predictions many frames into the future solely from the network's connections. When the recurrent connections that drive waves are randomly shuffled, both traveling waves and the ability to predict are eliminated. These results suggest traveling waves may play an essential computational role in the visual system by embedding continuous spatiotemporal structures over spatial maps.


Asunto(s)
Corteza Visual , Vigilia , Animales , Corteza Visual/fisiología
2.
Elife ; 112022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35770968

RESUMEN

The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.


Asunto(s)
Hormona Liberadora de Corticotropina , Núcleo Hipotalámico Paraventricular , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo
3.
Nat Commun ; 12(1): 6057, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663796

RESUMEN

Studies of sensory-evoked neuronal responses often focus on mean spike rates, with fluctuations treated as internally-generated noise. However, fluctuations of spontaneous activity, often organized as traveling waves, shape stimulus-evoked responses and perceptual sensitivity. The mechanisms underlying these waves are unknown. Further, it is unclear whether waves are consistent with the low rate and weakly correlated "asynchronous-irregular" dynamics observed in cortical recordings. Here, we describe a large-scale computational model with topographically-organized connectivity and conduction delays relevant to biological scales. We find that spontaneous traveling waves are a general property of these networks. The traveling waves that occur in the model are sparse, with only a small fraction of neurons participating in any individual wave. Consequently, they do not induce measurable spike correlations and remain consistent with locally asynchronous irregular states. Further, by modulating local network state, they can shape responses to incoming inputs as observed in vivo.


Asunto(s)
Modelos Neurológicos , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Simulación por Computador , Femenino , Haplorrinos , Masculino , Modelos Animales , Corteza Visual/fisiología
4.
Neuroimage ; 226: 117525, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246129

RESUMEN

In EEG data acquired in the presence of fMRI, gradient-related spike artifacts contaminate the signal following the common preprocessing step of average artifact subtraction. Spike artifacts compromise EEG data quality since they overlap with the EEG signal in frequency, thereby confounding frequency-based inferences on activity. As well, spike artifacts can inflate or deflate correlations among time series, thereby confounding inferences on functional connectivity. We present Schrödinger filtering, which uses the Schrödinger equation to decompose the spike-containing input. The basis functions of the decomposition are localized and pulse-shaped, and selectively capture the various input peaks, with the spike components clustered at the beginning of the spectrum. Schrödinger filtering automatically subtracts the spike components from the data. On real and simulated data, we show that Schrödinger filtering (1) simultaneously accomplishes high spike removal and high signal preservation without affecting evoked activity, and (2) reduces spurious pairwise correlations in spontaneous activity. In these regards, Schrödinger filtering was significantly better than three other despiking techniques: median filtering, amplitude thresholding, and wavelet denoising. These results encourage the use of Schrödinger filtering in future EEG-fMRI pipelines, as well as in other spike-related applications (e.g., fMRI motion artifact removal or action potential extraction).


Asunto(s)
Artefactos , Electroencefalografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Algoritmos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA