Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(3): 471-482, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943004

RESUMEN

Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006). quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot analysis performed on (I) HEK293 stably transfected with empty vector compared to wild-type frataxin and (II) lymphoblasts from FRDA patients show that low frataxin mRNA and protein expression correspond to reduced levels of HAX-1. Frataxin overexpression and silencing were also performed in the AC16 human cardiomyocyte cell line. HAX-1 protein levels are indeed regulated through frataxin modulation. Moreover, correlation between frataxin and HAX-1 was further evaluated in peripheral blood mononuclear cells (PBMCs) from FRDA patients and from non-related healthy controls. A regression model for frataxin which included HAX-1, group membership and group* HAX-1 interaction revealed that frataxin and HAX-1 are associated both at mRNA and protein levels. Additionally, a linked expression of FXN, HAX-1 and antioxidant defence proteins MnSOD and Nrf2 was observed both in PBMCs and AC16 cardiomyocytes. Our results suggest that HAX-1 could be considered as a potential biomarker of cardiac disease in FRDA and the evaluation of its expression might provide insights into its pathogenesis as well as improving risk stratification strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomiopatía Hipertrófica/patología , Ataxia de Friedreich/complicaciones , Regulación de la Expresión Génica , Insuficiencia Cardíaca/patología , Proteínas de Unión a Hierro/metabolismo , Miocitos Cardíacos/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Cardiomiopatía Hipertrófica/etiología , Cardiomiopatía Hipertrófica/metabolismo , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Adulto Joven , Frataxina
2.
Mov Disord ; 34(3): 323-334, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30624801

RESUMEN

BACKGROUND: Friedreich's ataxia is an autosomal-recessive cerebellar ataxia caused by mutation of the frataxin gene, resulting in decreased frataxin expression, mitochondrial dysfunction, and oxidative stress. Currently, no treatment is available for Friedreich's ataxia patients. Given that levels of residual frataxin critically affect disease severity, the main goal of a specific therapy for Friedreich's ataxia is to increase frataxin levels. OBJECTIVES: With the aim to accelerate the development of a new therapy for Friedreich's ataxia, we took a drug repositioning approach to identify market-available drugs able to increase frataxin levels. METHODS: Using a cell-based reporter assay to monitor variation in frataxin amount, we performed a high-throughput screening of a library containing 853 U.S. Food and Drug Administration-approved drugs. RESULTS: Among the potentially interesting candidates isolated from the screening, we focused our attention on etravirine, an antiviral drug currently in use as an anti-human immunodeficiency virus therapy. Here, we show that etravirine can promote a significant increase in frataxin levels in cells derived from Friedreich's ataxia patients, by enhancing frataxin messenger RNA translation. Importantly, frataxin accumulation in treated patient cell lines is comparable to frataxin levels in unaffected carrier cells, suggesting that etravirine could be therapeutically relevant. Indeed, etravirine treatment restores the activity of the iron-sulphur cluster containing enzyme aconitase and confers resistance to oxidative stress in cells derived from Friedreich's ataxia patients. CONCLUSIONS: Considering its excellent safety profile along with its ability to increase frataxin levels and correct some of the disease-related defects, etravirine represents a promising candidate as a therapeutic for Friedreich's ataxia. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia de Friedreich/tratamiento farmacológico , Proteínas de Unión a Hierro/metabolismo , Piridazinas/uso terapéutico , Línea Celular , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Nitrilos , Pirimidinas , Frataxina
3.
FEBS Open Bio ; 8(3): 390-405, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29511616

RESUMEN

Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes. His6-TAT-FXN1-210 was expressed in Escherichia coli and conditions were found for purifying folded protein free of aggregation, oxidation or degradation, even after freezing and thawing. The protein was found to be stable and monomeric, with the N-terminal stretch (residues 1-89) mostly unstructured and the C-terminal domain properly folded. The experimental data suggest a complex picture for the folding process of full-length frataxin in vitro: the presence of the N-terminal region increased the tendency of FXN to aggregate at high temperatures but this could be avoided by the addition of low concentrations of GdmCl. The purified precursor was translocated through cell membranes. In addition, immune response against His6-TAT-FXN1-210 was measured, suggesting that the C-terminal fragment was not immunogenic at the assayed protein concentrations. Finally, the recognition of recombinant FXN by cellular proteins was studied to evaluate its functionality. In this regard, cysteine desulfurase NFS1/ISD11/ISCU was activated in vitro by His6-TAT-FXN1-210. Moreover, the results showed that His6-TAT-FXN1-210 can be ubiquitinated in vitro by the recently identified frataxin E3 ligase RNF126, in a similar way as the FXN1-210, suggesting that the His6-TAT extension does not interfere with the ubiquitination machinery.

4.
Cell Rep ; 18(8): 2007-2017, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28228265

RESUMEN

Friedreich ataxia (FRDA) is a severe genetic neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. To date, there is no therapy to treat this condition. The amount of residual frataxin critically affects the severity of the disease; thus, attempts to restore physiological frataxin levels are considered therapeutically relevant. Frataxin levels are controlled by the ubiquitin-proteasome system; therefore, inhibition of the frataxin E3 ligase may represent a strategy to achieve an increase in frataxin levels. Here, we report the identification of the RING E3 ligase RNF126 as the enzyme that specifically mediates frataxin ubiquitination and targets it for degradation. RNF126 interacts with frataxin and promotes its ubiquitination in a catalytic activity-dependent manner, both in vivo and in vitro. Most importantly, RNF126 depletion results in frataxin accumulation in cells derived from FRDA patients, highlighting the relevance of RNF126 as a new therapeutic target for Friedreich ataxia.


Asunto(s)
Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Catálisis , Línea Celular , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Frataxina
5.
Neurobiol Dis ; 75: 91-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25549872

RESUMEN

Friedreich ataxia is an inherited neurodegenerative disease that leads to progressive disability. There is currently no effective treatment and patients die prematurely. The underlying genetic defect leads to reduced expression of the mitochondrial protein frataxin. Frataxin insufficiency causes mitochondrial dysfunction and ultimately cell death, particularly in peripheral sensory ganglia. There is an inverse correlation between the amount of residual frataxin and the severity of disease progression; therefore, therapeutic approaches aiming at increasing frataxin levels are expected to improve patients' conditions. We previously discovered that a significant amount of frataxin precursor is degraded by the ubiquitin/proteasome system before its functional mitochondrial maturation. We also provided evidence for the therapeutic potential of small molecules that increase frataxin levels by docking on the frataxin ubiquitination site, thus preventing frataxin ubiquitination and degradation. We called these compounds ubiquitin-competing molecules (UCM). By extending our search for effective UCM, we identified a set of new and more potent compounds that more efficiently promote frataxin accumulation. Here we show that these compounds directly interact with frataxin and prevent its ubiquitination. Interestingly, these UCM are not effective on the ubiquitin-resistant frataxin mutant, indicating their specific action on preventing frataxin ubiquitination. Most importantly, these compounds are able to promote frataxin accumulation and aconitase rescue in cells derived from patients, strongly supporting their therapeutic potential.


Asunto(s)
Aconitato Hidratasa/metabolismo , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/metabolismo , Fármacos Neuroprotectores/farmacología , Sitios de Unión , Línea Celular , Diseño de Fármacos , Fluorescencia , Células HEK293 , Humanos , Immunoblotting , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Simulación del Acoplamiento Molecular , Mutación , Fármacos Neuroprotectores/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitinación/efectos de los fármacos , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...