Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
J Am Chem Soc ; 146(10): 6493-6505, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38426440

PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based ß-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.


Methionine , Ornithine/analogs & derivatives , S-Adenosylmethionine , S-Adenosylmethionine/metabolism , Lysine , Racemethionine , Electron Spin Resonance Spectroscopy
2.
Nat Chem Biol ; 20(3): 382-391, 2024 Mar.
Article En | MEDLINE | ID: mdl-38158457

D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown. Here we report an atomic-resolution crystal structure of a RiPP-modifying radical SAM enzyme in complex with its substrate properly positioned in the active site. Crystallographic snapshots, size-exclusion chromatography-small-angle x-ray scattering, electron paramagnetic resonance spectroscopy and biochemical analyses reveal how epimerizations are installed in RiPPs and support an unprecedented enzyme mechanism for peptide epimerization. Collectively, our study brings unique perspectives on how radical SAM enzymes interact with RiPPs and catalyze post-translational modifications in natural products.


Biological Products , S-Adenosylmethionine , Amino Acids , Anti-Bacterial Agents , Peptides
3.
Curr Opin Struct Biol ; 83: 102725, 2023 Dec.
Article En | MEDLINE | ID: mdl-37931378

In the last decade, B12-dependent radical SAM enzymes have emerged as central biocatalysts in the biosynthesis of a myriad of natural products. Notably, these enzymes have been shown to catalyze carbon-carbon bond formation on unactivated carbon atoms leading to unusual methylations. Recently, structural studies have revealed unprecedented insights into the complex chemistry catalyzed by these enzymes. In this review, we cover recent advances in our understanding of B12-dependent radical SAM enzymes from a mechanistic and structural perspective. We discuss the unanticipated diversity of these enzymes which suggests evolutionary links between various biosynthetic and metabolic pathways from antibiotic to RiPP and methane biosynthesis.


Carbon , S-Adenosylmethionine , Methylation , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Enzymes/metabolism
4.
Chemistry ; 28(31): e202200627, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35253932

B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.


Methyltransferases , S-Adenosylmethionine , Methylation , Methyltransferases/metabolism , S-Adenosylmethionine/chemistry , Tryptophan/chemistry , Vitamin B 12/chemistry
5.
Nature ; 602(7896): 336-342, 2022 02.
Article En | MEDLINE | ID: mdl-35110733

By catalysing the microbial formation of methane, methyl-coenzyme M reductase has a central role in the global levels of this greenhouse gas1,2. The activity of methyl-coenzyme M reductase is profoundly affected by several unique post-translational modifications3-6, such as  a unique C-methylation reaction catalysed by methanogenesis marker protein 10 (Mmp10), a radical S-adenosyl-L-methionine (SAM) enzyme7,8. Here we report the spectroscopic investigation and atomic resolution structure of Mmp10 from Methanosarcina acetivorans, a unique B12 (cobalamin)-dependent radical SAM enzyme9. The structure of Mmp10 reveals a unique enzyme architecture with four metallic centres and critical structural features involved in the control of catalysis. In addition, the structure of the enzyme-substrate complex offers a glimpse into a B12-dependent radical SAM enzyme in a precatalytic state. By combining electron paramagnetic resonance spectroscopy, structural biology and biochemistry, our study illuminates the mechanism by which the emerging superfamily of B12-dependent radical SAM enzymes catalyse chemically challenging alkylation reactions and identifies distinctive active site rearrangements to provide a structural rationale for the dual use of the SAM cofactor for radical and nucleophilic chemistry.


Archaeal Proteins , Methanosarcina , S-Adenosylmethionine , Archaeal Proteins/chemistry , Electron Spin Resonance Spectroscopy , Methanosarcina/enzymology , Methylation , Protein Conformation , Protein Processing, Post-Translational , S-Adenosylmethionine/chemistry , Vitamin B 12
6.
Front Chem ; 9: 678068, 2021.
Article En | MEDLINE | ID: mdl-34350157

To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.

7.
Microb Physiol ; 31(3): 306-318, 2021.
Article En | MEDLINE | ID: mdl-34120110

The epeXEPAB (formerly yydFGHIJ) locus of Bacillus subtilis encodes a minimalistic biosynthetic pathway for a linear antimicrobial epipeptide, EpeX, which is ribosomally produced and post-translationally processed by the action of the radical-SAM epimerase, EpeE, and a membrane-anchored signal 2 peptide peptidase, EpeP. The ABC transporter EpeAB provides intrinsic immunity against self-produced EpeX, without conferring resistance against extrinsically added EpeX. EpeX specifically targets, and severely perturbs the integrity of the cytoplasmic membrane, which leads to the induction of the Lia-dependent envelope stress response. Here, we provide new insights into the distribution, expression, and regulation of the minimalistic epeXEPAB locus of B. subtilis, as well as the biosynthesis and biological efficiency of the produced epipeptide EpeX*. A comprehensive comparative genomics study demonstrates that the epe-locus is restricted to but widely distributed within the phylum Firmicutes. The gene products of epeXEP are necessary and sufficient for the production of the mature antimicrobial peptide EpeX*. In B. subtilis, the epeXEPAB locus is transcribed from three different promoters, one upstream of epeX (PepeX) and two within epeP (PepeA1 and PepeA2). While the latter two are mostly constitutive, PepeX shows a growth phase-dependent induction at the onset of stationary phase. We demonstrate that this regulation is the result of the antagonistic action of two global regulators: The transition state regulator AbrB keeps the epe locus shut off during exponential growth by direct binding. This tight repression is relieved by the master regulator of sporulation, Spo0A, which counteracts the AbrB-dependent repression of epeXEPAB expression during the transition to stationary phase. The net result of these three -promoters is an expression pattern that ensures EpeAB-dependent autoimmunity prior to EpeX* production. In the absence of EpeAB, the general envelope stress response proteins LiaIH can compensate for the loss of specific autoimmunity by providing sufficient protection against the membrane-perturbating action of EpeX*. Hence, the transcriptional regulation of epe expression and the resulting intrinsic induction of the two corresponding resistance functions, encoded by epeAB and liaIH, are well balanced to provide a need-based immunity against mature EpeX*.


Bacterial Proteins , Gene Expression Regulation, Bacterial , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cell Membrane/metabolism , Firmicutes/metabolism
8.
J Biol Chem ; 295(49): 16665-16677, 2020 12 04.
Article En | MEDLINE | ID: mdl-32972973

Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether-containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,ß-dehydro-amino acid intermediate during Cα-thioether bridge LC-MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.


Bacterial Proteins/metabolism , Bacteriocins/metabolism , Clostridiales/metabolism , Microbiota , Sulfides/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteriocins/chemistry , Bacteriocins/genetics , Biocatalysis , Chromatography, High Pressure Liquid , Humans , Kinetics , Multigene Family , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sterile Alpha Motif , Substrate Specificity , Sulfides/analysis , Sulfides/metabolism , Tandem Mass Spectrometry
10.
Org Lett ; 22(11): 4344-4349, 2020 06 05.
Article En | MEDLINE | ID: mdl-32396378

N-Propargyl tryptamine and tryptophan derivatives that are readily available from both synthetic and biocatalytic approaches undergo gold-catalyzed dearomative cyclizations in aqueous media to the corresponding spirocyclic derivatives. In addition to the efficiency of the method, operating in aqueous media affords a selective entry to C2-unsubstituted spiroindolenines that have long remained unattainable by Au(I) catalysis. Moderate to excellent yields of the desired spirocyclic products bearing various substituents were obtained.

11.
Front Microbiol ; 11: 151, 2020.
Article En | MEDLINE | ID: mdl-32117169

The Gram-positive model organism and soil bacterium Bacillus subtilis naturally produces a variety of antimicrobial peptides (AMPs), including the ribosomally synthesized and post-translationally modified AMP YydF, which is encoded in the yydFGHIJ locus. The yydF gene encodes the pre-pro-peptide, which is, in a unique manner, initially modified at two amino acid positions by the radical SAM epimerase YydG. Subsequently, the membrane-anchored putative protease YydH is thought to cleave and release the mature AMP, YydF, to the environment. The AMP YydF, with two discreet epimerizations among 17 residues as sole post-translational modification, defines a novel class of ribosomally synthesized and post-translationally modified peptides (RiPPs) called epipeptides, for which the mode-of-action (MOA) is unknown. The predicted ABC transporter encoded by yydIJ was previously postulated as an autoimmunity determinant of B. subtilis against its own AMP. Here, we demonstrate that extrinsically added YydF* kills B. subtilis cells by dissipating membrane potential via membrane permeabilization. This severe membrane perturbation is accompanied by a rapid reduction of membrane fluidity, substantiated by lipid domain formation. The epipeptide triggers a narrow and highly specific cellular response. The strong induction of liaIH expression, a marker for cell envelope stress in B. subtilis, further supports the MOA described above. A subsequent mutational study demonstrates that LiaIH-and not YydIJ-represents the most efficient resistance determinant against YydF* action. Unexpectedly, none of the observed cellular effects upon YydF* treatment alone are able to trigger liaIH expression, indicating that only the unique combination of membrane permeabilization and membrane rigidification caused by the epipetide, leads to the observed cell envelope stress response.

12.
J Biol Chem ; 294(40): 14512-14525, 2019 10 04.
Article En | MEDLINE | ID: mdl-31337708

The human microbiota plays a central role in human physiology. This complex ecosystem is a promising but untapped source of bioactive compounds and antibiotics that are critical for its homeostasis. However, we still have a very limited knowledge of its metabolic and biosynthetic capabilities. Here we investigated an enigmatic biosynthetic gene cluster identified previously in the human gut symbiont Ruminococcus gnavus This gene cluster which encodes notably for peptide precursors and putative radical SAM enzymes, has been proposed to be responsible for the biosynthesis of ruminococcin C (RumC), a ribosomally synthesized and posttranslationally modified peptide (RiPP) with potent activity against the human pathogen Clostridium perfringens By combining in vivo and in vitro approaches, including recombinant expression and purification of the respective peptides and proteins, enzymatic assays, and LC-MS analyses, we determined that RumC is a sulfur-to-α-carbon thioether-containing peptide (sactipeptide) with an unusual architecture. Moreover, our results support that formation of the thioether bridges follows a processive order, providing mechanistic insights into how radical SAM (AdoMet) enzymes install posttranslational modifications in RiPPs. We also found that the presence of thioether bridges and removal of the leader peptide are required for RumC's antimicrobial activity. In summary, our findings provide evidence that production of the anti-Clostridium peptide RumC depends on an R. gnavus operon encoding five potential RumC precursor peptides and two radical SAM enzymes, uncover key RumC structural features, and delineate the sequence of posttranslational modifications leading to its formation and antimicrobial activity.


Bacteriocins/chemistry , Clostridiales/genetics , Clostridium perfringens/genetics , Gastrointestinal Microbiome/genetics , Peptides/genetics , Amino Acid Sequence/genetics , Bacteriocins/biosynthesis , Bacteriocins/genetics , Clostridiales/enzymology , Clostridium perfringens/chemistry , Clostridium perfringens/pathogenicity , Humans , Multigene Family/genetics , Peptide Biosynthesis/genetics , Peptides/chemistry , Protein Processing, Post-Translational/genetics , Ribosomes/genetics , Sterile Alpha Motif/genetics , Sulfides/chemistry , Symbiosis/genetics
13.
J Am Chem Soc ; 140(7): 2469-2477, 2018 02 21.
Article En | MEDLINE | ID: mdl-29253341

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner. By combining mutagenesis experiments with labeling studies and investigating the enzyme substrate promiscuity, we deciphered in detail the mechanism of PoyD. We notably identified a critical cysteine residue as a likely key H atom donor and demonstrated that PoyD belongs to a distinct family of radical SAM peptidyl epimerases. In addition, our study shows that the core peptide directly influences the epimerization pattern allowing for production of peptides with unnatural epimerization patterns.

14.
Front Chem ; 5: 87, 2017.
Article En | MEDLINE | ID: mdl-29167789

Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.

15.
Nat Chem ; 9(7): 698-707, 2017 07.
Article En | MEDLINE | ID: mdl-28644475

Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.


Bacillus subtilis/metabolism , Peptides/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , Ribosomes/metabolism , S-Adenosylmethionine/metabolism , Bacillus subtilis/enzymology , Free Radicals/chemistry , Free Radicals/metabolism , Molecular Conformation
16.
J Biol Chem ; 292(26): 10835-10844, 2017 06 30.
Article En | MEDLINE | ID: mdl-28476884

Radical S-adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to Cα atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in Streptococcus thermophilus, and a reaction mechanism has been proposed. By combining site-directed mutagenesis, biochemical assays, and spectroscopic analyses, we show here that this enzyme, belonging to the emerging family of SPASM domain radical SAM enzymes, likely contains three [4Fe-4S] clusters. Notably, our data support that the seven conserved cysteine residues, present within the SPASM domain, are critical for enzyme activity. In addition, we uncovered the minimum substrate requirements and demonstrate that KW cyclic peptides are more widespread than anticipated, notably in pathogenic bacteria. Finally, we show a strict specificity of the enzyme for lysine and tryptophan residues and the dependence of an eight-amino acid leader peptide for activity. Altogether, our study suggests novel mechanistic links among SPASM domain radical SAM enzymes and supports the involvement of non-cysteinyl ligands in the coordination of auxiliary clusters.


Bacterial Proteins/chemistry , Iron-Sulfur Proteins/chemistry , Streptococcus thermophilus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Lysine/chemistry , Lysine/metabolism , Protein Domains , Streptococcus thermophilus/genetics , Tryptophan/chemistry , Tryptophan/metabolism
17.
Photochem Photobiol ; 93(1): 67-77, 2017 01.
Article En | MEDLINE | ID: mdl-28027411

Radical S-adenosyl-L-methionine (SAM) enzymes have emerged as one of the last superfamilies of enzymes discovered to date. Arguably, it is the most versatile group of enzymes involved in at least 85 biochemical transformations. One of the founding members of this enzyme superfamily is the spore photoproduct (SP) lyase, a DNA repair enzyme catalyzing the direct reversal repair of a unique DNA lesion, the so-called spore photoproduct, back into two thymidine residues. Discovered more than 20 years ago in the bacterium Bacillus subtilis, SP lyase has been shown to be widespread in the endospore-forming Firmicutes from the Bacilli and Clostridia classes and to use radical-based chemistry to perform C-C bond breakage, a chemically challenging reaction. This review describes how the work on SP lyase has illuminated a unique strategy for DNA repair and provided major advances in our understanding of the emerging radical SAM superfamily of enzymes, from a biochemical and structural perspective.


DNA Repair , Proteins/metabolism , S-Adenosylmethionine/metabolism , Bacillus subtilis/enzymology , Clostridium/enzymology , Nucleic Acids/metabolism , Protein Conformation , Proteins/chemistry , Ultraviolet Rays
18.
J Am Chem Soc ; 138(48): 15515-15518, 2016 12 07.
Article En | MEDLINE | ID: mdl-27934015

Genomic and metagenomic investigations have recently led to the delineation of a novel class of natural products called ribosomally synthesized and post-translationally modified peptides (RiPPs). RiPPs are ubiquitous among living organisms and include pharmaceutically relevant compounds such as antibiotics and toxins. A prominent example is polytheonamide A, which exhibits numerous post-translational modifications, some of which were unknown in ribosomal peptides until recently. Among these post-translational modifications, C-methylations have been proposed to be catalyzed by two putative radical S-adenosylmethionine (rSAM) enzymes, PoyB and PoyC. Here we report the in vitro activity of PoyC, the first B12-dependent rSAM enzyme catalyzing peptide Cß-methylation. We show that PoyC catalyzes the formation of S-adenosylhomocysteine and 5'-deoxyadenosine and the transfer of a methyl group to l-valine residue. In addition, we demonstrate for the first time that B12-rSAM enzymes have a tightly bound MeCbl cofactor that during catalysis transfers a methyl group originating from S-adenosyl-l-methionine. Collectively, our results shed new light on polytheonamide biosynthesis and the large and emerging family of B12-rSAM enzymes.


Biocatalysis , Methyltransferases/metabolism , Proteins/metabolism , S-Adenosylmethionine/metabolism , Vitamin B 12/metabolism , Free Radicals/chemistry , Free Radicals/metabolism , Intracellular Signaling Peptides and Proteins , Methylation , Methyltransferases/chemistry , Molecular Conformation , Proteins/chemistry , S-Adenosylmethionine/chemistry , Vitamin B 12/chemistry
19.
Nat Chem ; 8(5): 491-500, 2016 05.
Article En | MEDLINE | ID: mdl-27102684

Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.


Oxidoreductases Acting on Sulfur Group Donors/chemistry , Thiazolidines/chemistry , Carbon/chemistry , Catalysis , Catalytic Domain , Clostridium acetobutylicum/enzymology , Cysteine/analogs & derivatives , Cysteine/chemistry , Free Radicals/chemistry , Ligands , Models, Chemical , Quantum Theory , S-Adenosylmethionine/chemistry , Sulfur/chemistry , Thermotoga maritima/enzymology
20.
Chem Commun (Camb) ; 52(37): 6249-6252, 2016 May 07.
Article En | MEDLINE | ID: mdl-27087315

AlbA is a radical SAM enzyme catalyzing the formation of three unusual thioether bonds in the antibiotic subtilosin A. We demonstrate here that AlbA catalyzes direct Cα H-atom abstraction and likely contains three essential [4Fe-4S] centers. This leads us to propose novel mechanistic perspectives for thioether bond catalysis by radical SAM enzymes.


Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/metabolism , Bacteriocins/biosynthesis , Peptides, Cyclic/biosynthesis , Sulfides/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacteriocins/chemistry , Biocatalysis , Free Radicals/chemistry , Free Radicals/metabolism , Models, Molecular , Peptides, Cyclic/chemistry , Sulfides/chemistry
...