Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Cardiovasc Transl Res ; 16(4): 828-841, 2023 08.
Article En | MEDLINE | ID: mdl-36877449

Engineered cardiac microtissues were fabricated using pluripotent stem cells with a hypertrophic cardiomyopathy associated c. 2827 C>T; p.R943x truncation variant in myosin binding protein C (MYBPC3+/-). Microtissues were mounted on iron-incorporated cantilevers, allowing manipulations of cantilever stiffness using magnets, enabling examination of how in vitro afterload affects contractility. MYPBC3+/- microtissues developed augmented force, work, and power when cultured with increased in vitro afterload when compared with isogenic controls in which the MYBPC3 mutation had been corrected (MYPBC3+/+(ed)), but weaker contractility when cultured with lower in vitro afterload. After initial tissue maturation, MYPBC3+/- CMTs exhibited increased force, work, and power in response to both acute and sustained increases of in vitro afterload. Together, these studies demonstrate that extrinsic biomechanical challenges potentiate genetically-driven intrinsic increases in contractility that may contribute to clinical disease progression in patients with HCM due to hypercontractile MYBPC3 variants.


Cardiomyopathy, Hypertrophic , Pluripotent Stem Cells , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Mutation , Pluripotent Stem Cells/metabolism , Heart
2.
ACS Appl Mater Interfaces ; 11(23): 20603-20614, 2019 Jun 12.
Article En | MEDLINE | ID: mdl-31074953

New directions in material applications have allowed for the fresh insight into the coordination of biophysical cues and regulators. Although the role of the mechanical microenvironment on cell responses and mechanics is often studied, most analyses only consider static environments and behavior, however, cells and tissues are themselves dynamic materials that adapt in myriad ways to alterations in their environment. Here, we introduce an approach, through the addition of magnetic inclusions into a soft poly(dimethylsiloxane) elastomer, to fabricate a substrate that can be stiffened nearly instantaneously in the presence of cells through the use of a magnetic gradient to investigate short-term cellular responses to dynamic stiffening or softening. This substrate allows us to observe time-dependent changes, such as spreading, stress fiber formation, Yes-associated protein translocation, and sarcomere organization. The identification of temporal dynamic changes on a short time scale suggests that this technology can be more broadly applied to study targeted mechanisms of diverse biologic processes, including cell division, differentiation, tissue repair, pathological adaptations, and cell-death pathways. Our method provides a unique in vitro platform for studying the dynamic cell behavior by better mimicking more complex and realistic microenvironments. This platform will be amenable to future studies aimed at elucidating the mechanisms underlying mechanical sensing and signaling that influence cellular behaviors and interactions.


Extracellular Matrix/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Actins/metabolism , Cell Differentiation/physiology , Cell Division/physiology , Dimethylpolysiloxanes/chemistry , Elastomers/chemistry , Humans , Models, Theoretical , Real-Time Polymerase Chain Reaction , Sarcomeres/metabolism
3.
ACS Biomater Sci Eng ; 2(10): 1796-1799, 2016 Oct 10.
Article En | MEDLINE | ID: mdl-33440477

Fluid instabilities limit the ability of features to hold their shape in many types of 3D printing as liquid inks solidify into written structures. By 3D printing directly into a continuum of jammed granular microgels, these instabilities are circumvented by eliminating surface tension and body forces. However, this type of 3D printing process is potentially limited by inertial instabilities if performed at high speeds where turbulence may destroy features as they are written. Here, we design and test a high-speed 3D printing experimental system to identify the instabilities that arise when an injection nozzle translates at 1 m/s. We find that the viscosity of the injected material can control the Reynold's instability, and we discover an additional, unanticipated instability near the top surface of the granular microgel medium.

...