Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9061-9070, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743562

RESUMEN

Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.


Asunto(s)
Biomarcadores , Delfín Mular , Hidrocortisona , Contaminantes Químicos del Agua , Animales , Delfín Mular/metabolismo , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Monitoreo del Ambiente , Fluorocarburos , Estrés Fisiológico , Femenino , Masculino , South Carolina , Florida
3.
Ecohealth ; 20(3): 236-248, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38114749

RESUMEN

Many countries have adopted targets to increase marine protected areas (MPAs) to limit the degradation of water bodies. Although there is evidence that MPAs can conserve marine life and promote biodiversity, there are limited data on the human health implications of MPAs. Using panel data from 1990, 2000, and 2014, we estimated the country-level associations between MPAs (i.e., percentage of territorial waters designated as marine reserves) and age-standardized mortality (i.e., age-standardized probability of dying between 15 and 60 years from all-causes among ages 15-60/100,000 population) by sex, among 110 countries. We fit mixed-effects linear regression models of mortality as a function of current MPA coverage, gross domestic product growth, year, the prior extent of MPA, electricity coverage, governance, and country-level random effects. We observed a significant inverse association between current MPA coverage and adult mortality. For each 5-percentage-point increase in current MPA coverage, a country had 0.982 times the geometric means of female and male mortality [geometric mean ratio: 0.982 (95% CI 0·976, 0·988)] conditional on past %MPA coverage and other modeled variables. The model showed no significant residual association of mortality with past %MPA conditional on current %MPA and other modeled variables. This is one of the first studies to show a positive association between increasing marine conservation and human health. This macro-level study suggests there may be important co-benefits for human health from expanding MPAs that merit further investigation.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Femenino , Masculino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Animales , Biodiversidad , Peces , Ecosistema
4.
Mol Metab ; 26: 18-29, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31230943

RESUMEN

OBJECTIVE: Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. METHODS: Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12-16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. RESULTS: CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. CONCLUSIONS: We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/inducido químicamente , Proteína Reelina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...