Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(20): 5030-5043, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727250

RESUMEN

Using a combination of experiments and calculations, we have gained new insights into the nature of anion-cation interactions in ionic liquids (ILs). An X-ray photoelectron spectroscopy (XPS)-derived anion-dependent electrostatic interaction strength scale, determined using XPS core-level binding energies for IL cations, is presented here for 39 different anions, with at least 18 new anions included. Linear correlations of experimental XPS core-level binding energies for IL cations with (a) calculated core binding energies (ab initio molecular dynamics (AIMD) simulations were used to generate high-quality model IL structures followed by single-point density functional theory (DFT) to obtain calculated core binding energies), (b) experimental XPS core-level binding energies for IL anions, and (c) other anion-dependent interaction strength scales led to three main conclusions. First, the effect of different anions on the cation can be related to ground-state interactions. Second, the variations of anion-dependent interactions with the identity of the anion are best rationalized in terms of electrostatic interactions and not occupied valence state/unoccupied valence state interactions or polarizability-driven interactions. Therefore, the XPS-derived anion-dependent interaction strength scale can be explained using a simple electrostatic model based on electrostatic site potentials. Third, anion-probe interactions, irrespective of the identity of the probe, are primarily electrostatic, meaning that our electrostatic interaction strength scale captures some inherent, intrinsic property of anions independent of the probe used to measure the interaction strength scale.

2.
Faraday Discuss ; 236(0): 157-177, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35485640

RESUMEN

Palladium and palladium-platinum foils were analysed using temperature-programmed near-ambient pressure X-ray photoelectron spectroscopy (TP-NAP-XPS) under methane oxidation conditions. Oxidation of palladium is inhibited by the presence of water, and in oxygen-poor environments. Pt addition further inhibits oxidation of palladium across all reaction conditions, preserving metallic palladium to higher temperatures. Bimetallic foils underwent significant restructuring under reaction conditions, with platinum preferentially migrating to the bulk under select conditions.

3.
Phys Chem Chem Phys ; 23(37): 20957-20973, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34545382

RESUMEN

Ionic liquid (IL) valence electronic structure provides key descriptors for understanding and predicting IL properties. The ionisation energies of 60 ILs are measured and the most readily ionised valence state of each IL (the highest occupied molecular orbital, HOMO) is identified using a combination of X-ray photoelectron spectroscopy (XPS) and synchrotron resonant XPS. A structurally diverse range of cations and anions were studied. The cation gave rise to the HOMO for nine of the 60 ILs presented here, meaning it is energetically more favourable to remove an electron from the cation than the anion. The influence of the cation on the anion electronic structure (and vice versa) were established; the electrostatic effects are well understood and demonstrated to be consistently predictable. We used this knowledge to make predictions of both ionisation energy and HOMO identity for a further 516 ILs, providing a very valuable dataset for benchmarking electronic structure calculations and enabling the development of models linking experimental valence electronic structure descriptors to other IL properties, e.g. electrochemical stability. Furthermore, we provide design rules for the prediction of the electronic structure of ILs.

4.
Langmuir ; 36(32): 9399-9411, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32706259

RESUMEN

Understanding the interaction of amino acids with metal surfaces is essential for the rational design of chiral modifiers able to confer enantioselectivity to metal catalysts. Here, we present an investigation of the adsorption of aspartic acid (Asp) on the Ni{100} surface, using a combination of synchrotron X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure, and density functional theory simulations. Based on the combined analysis of the experimental and simulated data, we can identify the dominant mode of adsorption as a pentadentate configuration with three O atoms at the bridge sites of the surfaces, and the remaining oxygen atom and the amino nitrogen are located on atop sites. From temperature-programmed XPS measurements, it was found that Asp starts decomposing above 400 K, which is significantly higher than typical decomposition temperatures of smaller organic molecules on Ni surfaces. Our results offer valuable insights into understanding the role of Asp as a chiral modifier of nickel catalyst surfaces in enantioselective hydrogenation reactions.

5.
Nano Lett ; 18(4): 2365-2372, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29561625

RESUMEN

The growth and reactive dewetting of ultrathin films of iron oxides supported on Re(0001) surfaces have been imaged in situ in real time. Initial growth forms a nonmagnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns in length but less than 40 nm in width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe3O4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.

6.
Anal Chem ; 83(16): 6208-14, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21761874

RESUMEN

The synthesis of a dithiol-functionalized pyrene derivative is reported, together with studies of interactions between this receptor (and other related pyrenes) and nitroaromatic compounds (NACs), in both solution and in the solid state. Spectroscopic analysis in solution and X-ray crystallographic analysis of cocrystals of pyrene and NACs in the solid state indicate that supramolecular interactions lead to the formation of defined π-π stacked complexes. The dithiol-functionalized pyrene derivative can be used to modify the surface of a gold quartz crystal microbalance (QCM) to create a unique π-electron rich surface, which is able to interact with electron poor aromatic compounds. For example, exposure of the modified QCM surface to the nitroaromatic compound 2,4-dinitrotoluene (DNT) in solution results in a reduction in the resonant frequency of the QCM as a result of supramolecular interactions between the electron-rich pyrenyl surface layer and the electron-poor DNT molecules. These results suggest the potential use of such modified QCM surfaces for the detection of explosive NACs.

7.
Phys Chem Chem Phys ; 11(13): 2156-60, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19305887

RESUMEN

The rutile TiO2(110) surface has been doped with sub-monolayer metallic Cr, which oxidises and donates charge to specific surface Ti ions. X-Ray and ultra violet photoemission spectroscopy and first principles density functional theory with Hubbard U are used to assign the oxidation states of Cr and surface Ti and we find that Cr2+ forms on bridging oxygen ions and a 5-fold coordinated surface Ti atom is reduced to Ti3+ and the Cr ions readily react with oxygen (to Cr3+), which leads to depletion of surface Ti3+ 3d electrons.

8.
J Phys Condens Matter ; 21(47): 474224, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21832503

RESUMEN

Here we describe results which teach us much about the mechanism of the reduction and oxidation of TiO(2)(110) by the application of scanning tunnelling microscopy imaging at high temperatures. Titania reduces at high temperature by thermal oxygen loss to leave localized (i.e.  Ti(3+)) and delocalized electrons on the lattice Ti, and a reduced titania interstitial that diffuses into the bulk of the crystal. The interstitial titania can be recalled to the surface by treatment in very low pressures of oxygen, occurring at a significant rate even at 573 K. This re-oxidation occurs by re-growth of titania layers in a Volmer-Weber manner, by a repeating sequence in which in-growth of extra titania within the cross-linked (1 × 2) structure completes the (1 × 1) bulk termination. The next layer then initiates with the nucleation of points and strings which extend to form islands of cross-linked (1 × 2), which once again grow and fill in to reform the (1 × 1). This process continues in a cyclical manner to form many new layers of well-ordered titania. The details of the mechanism and kinetics of the process are considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...