Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 54(3): 756-64, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25247666

RESUMEN

The hydride Ba(3)Si(4)H(x) (x = 1-2) was prepared by sintering the Zintl phase Ba(3)Si(4), which contains Si(4)(6-) butterfly-shaped polyanions, in a hydrogen atmosphere at pressures of 10-20 bar and temperatures of around 300 °C. Initial structural analysis using powder neutron and X-ray diffraction data suggested that Ba(3)Si(4)H(x) adopts the Ba(3)Ge(4)C(2) type [space group I4/mcm (No. 140), a ≈ 8.44 Å, c ≈ 11.95 Å, Z = 8] where Ba atoms form a three-dimensional array of corner-condensed octahedra, which are centered by H atoms. Tetrahedron-shaped Si(4) polyanions complete a perovskite-like arrangement. Thus, hydride formation is accompanied by oxidation of the butterfly polyanion, but the model with the composition Ba(3)Si(4)H is not charge-balanced. First-principles computations revealed an alternative structural scenario for Ba(3)Si(4)H(x), which is based on filling pyramidal Ba5 interstices in Ba(3)Si(4). The limiting composition is x = 2 [space group P4(2)/mmm (No. 136), a ≈ 8.4066 Å, c ≈ 12.9186 Å, Z = 8], and for x > 1, Si atoms also adopt tetrahedron-shaped polyanions. Transmission electron microscopy investigations showed that Ba(3)Si(4)H(x) is heavily disordered in the c direction. Most plausible is to assume that Ba(3)Si(4)H(x) has a variable H content (x = 1-2) and corresponds to a random intergrowth of P- and I-type structure blocks. In either form, Ba(3)Si(4)H(x) is classified as an interstitial hydride. Polyanionic hydrides in which H is covalently attached to Si remain elusive.

2.
Inorg Chem ; 53(16): 8691-9, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25068601

RESUMEN

ZnAs was synthesized at 6 GPa and 1273 K utilizing multianvil high-pressure techniques and structurally characterized by single-crystal and powder X-ray diffraction (space group Pbca (No. 61), a = 5.6768(2) Å, b = 7.2796(2) Å, c = 7.5593(2) Å, Z = 8). The compound is isostructural to ZnSb (CdSb type) and displays multicenter bonded rhomboid rings Zn2As2, which are connected to each other by classical two-center, two-electron bonds. At ambient pressure ZnAs is metastable with respect to Zn3As2 and ZnAs2. When heating at a rate of 10 K/min decomposition takes place at ∼700 K. Diffuse reflectance measurements reveal a band gap of 0.9 eV. Electrical resistivity, thermopower, and thermal conductivity were measured in the temperature range of 2-400 K and compared to thermoelectric ZnSb. The room temperature values of the resistivity and thermopower are ∼1 Ω cm and +27 µV/K, respectively. These values are considerably higher and lower, respectively, compared to ZnSb. Above 150 K the thermal conductivity attains low values, around 2 W/m·K, which is similar to that of ZnSb. The heat capacity of ZnAs was measured between 2 and 300 K and partitioned into a Debye and two Einstein contributions with temperatures of θD = 234 K, θE1 = 95 K, and θE2 = 353 K. Heat capacity and thermal conductivity of ZnSb and ZnAs show very similar features, which possibly relates to their common electron-poor bonding properties.

3.
Appl Opt ; 44(13): 2607-12, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15881070

RESUMEN

Smart pixels permit rapid signal processing through the use of integrated photodetectors and processing electronics on a single semiconductor chip. Smart pixels with smart illumination can increase the dynamic range and functionality of smart pixels by employing optoelectronic feedback to control the illumination of a scene. This combination of smart pixels and optoelectronic feedback leads to many potential sensor applications, including normalized differential detection, which is modeled and demonstrated here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA