Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Evol ; 7(2): veab061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527284

RESUMEN

Four coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E) are endemic in human populations. All these viruses are seasonal and generate short-term immunity. Like the highly pathogenic coronaviruses, the endemic coronaviruses have zoonotic origins. Thus, understanding the evolutionary dynamics of these human viruses might provide insight into the future trajectories of SARS-CoV-2 evolution. Because the zoonotic sources of HCoV-OC43 and HCoV-229E are known, we applied a population genetics-phylogenetic approach to investigate which selective events accompanied the divergence of these viruses from the animal ones. Results indicated that positive selection drove the evolution of some accessory proteins, as well as of the membrane proteins. However, the spike proteins of both viruses and the hemagglutinin-esterase (HE) of HCoV-OC43 represented the major selection targets. Specifically, for both viruses, most positively selected sites map to the receptor-binding domains (RBDs) and are polymorphic. Molecular dating for the HCoV-229E spike protein indicated that RBD Classes I, II, III, and IV emerged 3-9 years apart. However, since the appearance of Class V (with much higher binding affinity), around 25 years ago, limited genetic diversity accumulated in the RBD. These different time intervals are not fully consistent with the hypothesis that HCoV-229E spike evolution was driven by antigenic drift. An alternative, not mutually exclusive possibility is that strains with higher affinity for the cellular receptor have out-competed strains with lower affinity. The evolution of the HCoV-OC43 spike protein was also suggested to undergo antigenic drift. However, we also found abundant signals of positive selection in HE. Whereas such signals might result from antigenic drift, as well, previous data showing co-evolution of the spike protein with HE suggest that optimization for human cell infection also drove the evolution of this virus. These data provide insight into the possible trajectories of SARS-CoV-2 evolution, especially in case the virus should become endemic.

2.
ACS Catal ; 10(13): 7328-7335, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32655979

RESUMEN

Ni-Fe CO-dehydrogenases (CODHs) catalyze the conversion between CO and CO2 using a chain of Fe-S clusters to mediate long-range electron transfer. One of these clusters, the D-cluster, is surface-exposed and serves to transfer electrons between CODH and external redox partners. These enzymes tend to be extremely O2-sensitive and are always manipulated under strictly anaerobic conditions. However, the CODH from Desulfovibrio vulgaris (Dv) appears unique: exposure to micromolar concentrations of O2 on the minutes-time scale only reversibly inhibits the enzyme, and full activity is recovered after reduction. Here, we examine whether this unusual property of Dv CODH results from the nature of its D-cluster, which is a [2Fe-2S] cluster, instead of the [4Fe-4S] cluster observed in all other characterized CODHs. To this aim, we produced and characterized a Dv CODH variant where the [2Fe-2S] D-cluster is replaced with a [4Fe-4S] D-cluster through mutagenesis of the D-cluster-binding sequence motif. We determined the crystal structure of this CODH variant to 1.83-Å resolution and confirmed the incorporation of a [4Fe-4S] D-cluster. We show that upon long-term O2-exposure, the [4Fe-4S] D-cluster degrades, whereas the [2Fe-2S] D-cluster remains intact. Crystal structures of the Dv CODH variant exposed to O2 for increasing periods of time provide snapshots of [4Fe-4S] D-cluster degradation. We further show that the WT enzyme purified under aerobic conditions retains 30% activity relative to a fully anaerobic purification, compared to 10% for the variant, and the WT enzyme loses activity more slowly than the variant upon prolonged aerobic storage. The D-cluster is therefore a key site of irreversible oxidative damage in Dv CODH, and the presence of a [2Fe-2S] D-cluster contributes to the O2-tolerance of this enzyme. Together, these results relate O2-sensitivity with the details of the protein structure in this family of enzymes.

3.
Biochim Biophys Acta Bioenerg ; 1861(7): 148188, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209322

RESUMEN

Ni-containing CO-dehydrogenases (CODHs) allow some microorganisms to couple ATP synthesis to CO oxidation, or to use either CO or CO2 as a source of carbon. The recent detailed characterizations of some of them have evidenced a great diversity in terms of catalytic properties and resistance to O2. In an effort to increase the number of available CODHs, we have heterologously produced in Desulfovibrio fructosovorans, purified and characterized the two CooS-type CODHs (CooS1 and CooS2) from the hyperthermophilic archaeon Thermococcus sp. AM4 (Tc). We have also crystallized CooS2, which is coupled in vivo to a hydrogenase. CooS1 and CooS2 are homodimers, and harbour five metalloclusters: two [Ni4Fe-4S] C clusters, two [4Fe-4S] B clusters and one interfacial [4Fe-4S] D cluster. We show that both are dependent on a maturase, CooC1 or CooC2, which is interchangeable. The homologous protein CooC3 does not allow Ni insertion in either CooS. The two CODHs from Tc have similar properties: they can both oxidize and produce CO. The Michaelis constants (Km) are in the microM range for CO and in the mM range (CODH 1) or above (CODH 2) for CO2. Product inhibition is observed only for CO2 reduction, consistent with CO2 binding being much weaker than CO binding. The two enzymes are rather O2 sensitive (similarly to CODH II from Carboxydothermus hydrogenoformans), and react more slowly with O2 than any other CODH for which these data are available.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Complejos Multienzimáticos/metabolismo , Thermococcus/enzimología , Aldehído Oxidorreductasas/química , Biocatálisis , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Electroquímica , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Complejos Multienzimáticos/química , Familia de Multigenes , Oxidación-Reducción , Oxígeno/metabolismo , Homología Estructural de Proteína , Terminología como Asunto , Thermococcus/genética
4.
Front Chem ; 8: 573305, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490032

RESUMEN

Hnd, an FeFe hydrogenase from Desulfovibrio fructosovorans, is a tetrameric enzyme that can perform flavin-based electron bifurcation. It couples the oxidation of H2 to both the exergonic reduction of NAD+ and the endergonic reduction of a ferredoxin. We previously showed that Hnd retains activity even when purified aerobically unlike other electron-bifurcating hydrogenases. In this study, we describe the purification of the enzyme under O2-free atmosphere and its biochemical and electrochemical characterization. Despite its complexity due to its multimeric composition, Hnd can catalytically and directly exchange electrons with an electrode. We characterized the catalytic and inhibition properties of this electron-bifurcating hydrogenase using protein film electrochemistry of Hnd by purifying Hnd aerobically or anaerobically, then comparing the electrochemical properties of the enzyme purified under the two conditions via protein film electrochemistry. Hydrogenases are usually inactivated under oxidizing conditions in the absence of dioxygen and can then be reactivated, to some extent, under reducing conditions. We demonstrate that the kinetics of this high potential inactivation/reactivation for Hnd show original properties: it depends on the enzyme purification conditions and varies with time, suggesting the coexistence and the interconversion of two forms of the enzyme. We also show that Hnd catalytic properties (Km for H2, diffusion and reaction at the active site of CO and O2) are comparable to those of standard hydrogenases (those which cannot catalyze electron bifurcation). These results suggest that the presence of the additional subunits, needed for electron bifurcation, changes neither the catalytic behavior at the active site, nor the gas diffusion kinetics but induces unusual rates of high potential inactivation/reactivation.

5.
Biochim Biophys Acta Bioenerg ; 1859(12): 1302-1312, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30463674

RESUMEN

The genome of the sulfate-reducing and anaerobic bacterium Desulfovibrio fructosovorans encodes different hydrogenases. Among them is Hnd, a tetrameric cytoplasmic [FeFe] hydrogenase that has previously been described as an NADP-specific enzyme (Malki et al., 1995). In this study, we purified and characterized a recombinant Strep-tagged form of Hnd and demonstrated that it is an electron-bifurcating enzyme. Flavin-based electron-bifurcation is a mechanism that couples an exergonic redox reaction to an endergonic one allowing energy conservation in anaerobic microorganisms. One of the three ferredoxins of the bacterium, that was named FdxB, was also purified and characterized. It contains a low-potential (Em = -450 mV) [4Fe4S] cluster. We found that Hnd was not able to reduce NADP+, and that it catalyzes the simultaneous reduction of FdxB and NAD+. Moreover, Hnd is the first electron-bifurcating hydrogenase that retains activity when purified aerobically due to formation of an inactive state of its catalytic site protecting against O2 damage (Hinact). Hnd is highly active with the artificial redox partner (methyl viologen) and can perform the electron-bifurcation reaction to oxidize H2 with a specific activity of 10 µmol of NADH/min/mg of enzyme. Surprisingly, the ratio between NADH and reduced FdxB varies over the reaction with a decreasing amount of FdxB reduced per NADH produced, indicating a more complex mechanism than previously described. We proposed a new mechanistic model in which the ferredoxin is recycled at the hydrogenase catalytic subunit.


Asunto(s)
Desulfovibrio/enzimología , Electrones , Hidrogenasas/metabolismo , Modelos Biológicos , Oxígeno/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Desulfovibrio/genética , Ferredoxinas/genética , Ferredoxinas/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , NAD/metabolismo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
6.
J Biol Inorg Chem ; 23(4): 621, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29845356

RESUMEN

Correction to: JBIC Journal of Biological Inorganic Chemistry.

7.
J Biol Inorg Chem ; 23(4): 613-620, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29445873

RESUMEN

Nickel-containing enzymes are diverse in terms of function and active site structure. In many cases, the biosynthesis of the active site depends on accessory proteins which transport and insert the Ni ion. We review and discuss the literature related to the maturation of carbon monoxide dehydrogenases (CODH) which bear a nickel-containing active site consisting of a [Ni-4Fe-4S] center called the C-cluster. The maturation of this center has been much less studied than that of other nickel-containing enzymes such as urease and NiFe hydrogenase. Several proteins present in certain CODH operons, including the nickel-binding proteins CooT and CooJ, still have unclear functions. We question the conception that the maturation of all CODH depends on the accessory protein CooC described as essential for nickel insertion into the active site. The available literature reveals biological variations in CODH active site biosynthesis.


Asunto(s)
Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Dominio Catalítico , Hierro , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Níquel , Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...