Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr ; 151(11): 3313-3328, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34383048

RESUMEN

BACKGROUND: Skeletal muscle progenitor cells (MPCs) repair damaged muscle postinjury. Pyruvate kinase M2 (PKM2) is a glycolytic enzyme (canonical activity) that can also interact with other proteins (noncanonical activity) to modify diverse cellular processes. Recent evidence links PKM2 to MPC proliferation. OBJECTIVES: This study aimed to understand cellular roles for PKM2 in MPCs and the necessity of PKM2 in MPCs for muscle regeneration postinjury. METHODS: Cultured, proliferating MPCs (C2C12 cells) were treated with a short hairpin RNA targeting PKM2 or small molecules that selectively affect canonical and noncanonical PKM2 activity (shikonin and TEPP-46). Cell number was measured, and RNA-sequencing and metabolic assays were used in follow-up experiments. Immunoprecipitation coupled to proteomics was used to identify binding partners of PKM2. Lastly, an MPC-specific PKM2 knockout mouse was generated and challenged with a muscle injury to determine the impact of PKM2 on regeneration. RESULTS: When the noncanonical activity of PKM2 was blocked or impaired, there was an increase in reactive oxygen species concentrations (1.6-2.0-fold, P < 0.01). Blocking noncanonical PKM2 activity also increased lactate excretion (1.2-1.6-fold, P < 0.05) and suppressed mitochondrial oxygen consumption (1.3-1.6-fold, P < 0.01). Glutamate dehydrogenase 1 (GLUD1) was identified as a PKM2 binding partner and blocking noncanonical PKM2 activity increased GLUD activity (1.5-1.6-fold, P < 0.05). Mice with an MPC-specific PKM2 deletion did not demonstrate impaired muscle regeneration. CONCLUSIONS: The results suggest that the noncanonical activity of PKM2 is important for MPC proliferation in vitro and demonstrate GLUD1 as a PKM2 binding partner. Because no impairments in muscle regeneration were detected in a mouse model, the endogenous environment may compensate for loss of PKM2.


Asunto(s)
Glucólisis , Piruvato Quinasa , Animales , Proliferación Celular , Ratones , Fibras Musculares Esqueléticas/metabolismo , Piridazinas , Pirroles , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA