Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(11): 8029-8037, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38458609

RESUMEN

Phase-change memory (PCM) devices have great potential as multilevel memory cells and artificial synapses for neuromorphic computing hardware. However, their practical use is hampered by resistance drift, a phenomenon commonly attributed to structural relaxation or electronic mechanisms primarily in the context of bulk effects. In this study, we reevaluate the electrical manifestation of resistance drift in sub-100 nm Ge2Sb2Te5 (GST) PCM devices, focusing on the contributions of bulk vs interface effects. We employ a combination of measurement techniques to elucidate the current transport mechanism and the electrical manifestation of resistance drift. Our steady-state temperature-dependent measurements reveal that resistance in these devices is predominantly influenced by their electrical contacts, with conduction occurring through thermionic emission (Schottky) at the contacts. Additionally, temporal current-voltage characterization allows us to link the resistance drift to a time-dependent increase in the Schottky barrier height. These findings provide valuable insights, pinpointing the primary contributor to resistance drift in PCM devices: the Schottky barrier height for hole injection at the interface. This underscores the significance of contacts (interface) in the electrical manifestation of drift in PCM devices.

2.
J Chem Phys ; 159(10)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37694751

RESUMEN

Vibrational strong coupling results from the interaction between optically allowed molecular vibrational excitations and the resonant mode of an infrared cavity. Strong coupling leads to the formation of hybrid states, known as vibrational polaritons, which are readily observed in transmission measurements and a manifold of the reservoir states. In contrast, Raman spectroscopy of vibrational polaritons is elusive and has recently been the focus of both theoretical and experimental investigations. Because Raman measurements are frequently performed with high-numerical aperture excitation/collection optics, the angular dispersion of the strongly coupled system must be carefully considered. Herein, we experimentally investigated vibrational polaritons involving dispersive collective lattice resonances of infrared antenna arrays. Despite clear indications of the strong coupling to vibrational excitations in the transmission spectrum; we found that Raman spectra do not bear signatures of the polaritonic transitions. Detailed measurements indicate that the disappearance of the Raman signal is not due to the polariton dispersion in our samples. On the other hand, the Tavis-Cummings-Holstein model that we employed to interpret our results suggests that the ratio of the Raman transition strengths between the reservoir and the polariton states scales according to the number of strongly coupled molecules. Because the vibrational transitions are relatively weak, the number of molecules required to achieve strong coupling conditions is about 109 per unit cell of the array of infrared antennas. Therefore, the scaling predicted by the Tavis-Cummings-Holstein model can explain the absence of the polariton signatures in spontaneous Raman scattering experiments.

3.
ACS Appl Mater Interfaces ; 12(32): 36355-36361, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32678569

RESUMEN

Atomically thin semiconductors are of interest for future electronics applications, and much attention has been given to monolayer (1L) sulfides, such as MoS2, grown by chemical vapor deposition (CVD). However, reports on the electrical properties of CVD-grown selenides, and MoSe2 in particular, are scarce. Here, we compare the electrical properties of 1L and bilayer (2L) MoSe2 grown by CVD and capped by sub-stoichiometric AlOx. The 2L channels exhibit ∼20× lower contact resistance (RC) and ∼30× larger current density compared with 1L channels. RC is further reduced by >5× with AlOx capping, which enables improved transistor current density. Overall, 2L AlOx-capped MoSe2 transistors (with ∼500 nm channel length) achieve improved current density (∼65 µA/µm at VDS = 4 V), a good Ion/Ioff ratio of >106, and an RC of ∼60 kΩ·µm. The weaker performance of 1L devices is due to their sensitivity to processing and ambient. Our results suggest that 2L (or few layers) is preferable to 1L for improved electronic properties in applications that do not require a direct band gap, which is a key finding for future two-dimensional electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA