Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2001): 20230619, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37339742

RESUMEN

Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.


Asunto(s)
Microbioma Gastrointestinal , Isópteros , Animales , Filogenia , Simbiosis , Bacterias/genética , Mamíferos
2.
Arthropod Struct Dev ; 73: 101238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36796136

RESUMEN

The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus Verrucositermes is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of Verrucositermes tuberosus soldiers. We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise rough endoplasmic reticulum and Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources.


Asunto(s)
Cucarachas , Isópteros , Animales , Isópteros/ultraestructura , Evolución Biológica , Epidermis
3.
Arthropod Struct Dev ; 67: 101136, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35152166

RESUMEN

Machadotermes is one of the basal Apicotermitinae genera, living in tropical West Africa. Old observations suggested the presence of a new gland, the intramandibular gland, in Machadotermes soldiers. Here, by combining micro-computed tomography, optical and electron microscopy, we showed that the gland exists in Machadotermes soldiers only as an active exocrine organ, consisting of numerous class III cells (bicellular units made of secretory and canal cells), within which the secretion is produced in rough endoplasmic reticulum, and modified and stored in Golgi apparatus. The final secretion is released out from the body through epicuticular canals running through the mandible cuticle to the exterior. We also studied three other Apicotermitinae, Indotermes, Duplidentitermes, and Jugositermes, in which this gland is absent. We speculate that the secretion of this gland may be used as a general protectant or antimicrobial agent. In addition, we observed that the frontal gland, a specific defensive organ in termites, is absent in Machadotermes soldiers while it is tiny in Indotermes soldiers and small in Duplidentitermes and Jugositermes soldiers. At last, we could also observe in all these species the labral, mandibular and labial glands, other exocrine glands present in all termite species studied so far.


Asunto(s)
Cucarachas , Isópteros , Animales , Glándulas Exocrinas/ultraestructura , Isópteros/ultraestructura , Microscopía Electrónica de Transmisión , Microtomografía por Rayos X
4.
Arthropod Struct Dev ; 51: 32-36, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31325649

RESUMEN

Termites have a rich set of exocrine glands. These glands are located all over the body, appearing in the head, thorax, legs and abdomen. Here, we describe the oral gland, a new gland formed by no more than a few tens of Class I secretory cells. The gland is divided into two secretory regions located just behind the mouth, on the dorsal and ventral side of the pharynx, respectively. The dominant secretory organelle is a smooth endoplasmic reticulum. Secretion release is under direct control of axons located within basal invaginations of the secretory cells. The secretion is released through a modified porous cuticle located at the mouth opening. We confirmed the presence of the oral gland in workers and soldiers of several wood- and soil-feeding species of Rhinotermitidae and Termitidae, suggesting a broader distribution of the oral gland among termites. The oral gland is the smallest exocrine gland described in termites so far. We hypothesise that the oily secretion can either ease the passage of food or serve as a primer pheromone.


Asunto(s)
Isópteros/ultraestructura , Animales , Glándulas Exocrinas/ultraestructura , Microscopía Electrónica de Transmisión , Boca/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...