Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
ACS Environ Au ; 3(5): 319-335, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37743953

In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship's underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.

2.
Toxicol Rep ; 9: 656-662, 2022.
Article En | MEDLINE | ID: mdl-35399216

The potential impacts of sub-surface hydrocarbon plumes to deep-water column micronekton are an important consideration in a more complete understanding of ecosystem effects resulting from deep-sea oil spills. However, evaluating toxicity in these organisms presents multiple challenges, and the use of a shallow-water proxy species allows comparison and validation of experimental results. This study thus examined the suitability of the peppermint shrimp, Lysmata boggessi, as an experimental proxy for ecologically important deep-sea zooplankton/micronekton in hydrocarbon toxicity assays. This crustacean species occurs in shallow coastal marine environments throughout the western Atlantic, Caribbean and Gulf of Mexico, is similar in size to the mesopelagic organisms previously tested and is readily available via commercial aquaculture. The effects of 1-methylnaphthalene and fresh Macondo oil (MC252) on L. boggessi were assessed in 48-h constant-exposure toxicity tests, and acute thresholds were compared to previously determined LC50s for oceanic mid water Euphausiidae, Janicella spinacauda, Systellaspis debilis, Sergestes sp., Sergia sp. and the mysid shrimp Americamysis bahia. Acute thresholds and the calculated critical target lipid body burden (CTLBB) for the shallow-water L. boggessi were comparable to the deep-water species tested, suggesting that L. boggessi may be a suitable proxy for some mesopelagic micronekton species in acute hydrocarbon exposures.

3.
PLoS One ; 17(2): e0263420, 2022.
Article En | MEDLINE | ID: mdl-35196352

Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained. To answer this open question, we exposed a mesopelagic microbial community from the Gulf of Mexico to oil alone, three concentrations of oil dispersed with Corexit 9500, and three concentrations of Corexit 9500 alone over long periods of time. We analyzed changes in hydrocarbon chemistry, cell abundance, and microbial community composition at zero, three and six weeks. The lowest concentration of dispersed oil yielded hydrocarbon concentrations lower than oil alone and microbial community composition more similar to control seawater than any other treatments with oil or dispersant. Higher concentrations of dispersed oil resulted in higher concentrations of microbe-oil microaggregates and similar microbial composition to the oil alone treatment. The genus Colwellia was more abundant when exposed to multiple concentrations of dispersed oil, but not when exposed to dispersant alone. Conversely, the most abundant Marinobacter amplicon sequence variant (ASV) was not influenced by dispersant when oil was present and showed an inverse relationship to the summed abundance of Alcanivorax ASVs. As a whole, the data presented here show that the concentration of oil strongly impacts microbial community response, more so than the presence of dispersant, confirming the importance of the concentrations of both oil and dispersant in considering the design and interpretation of results for oil spill simulation experiments.


Lipids/pharmacology , Microbiota/drug effects , Microbiota/genetics , Petroleum Pollution/adverse effects , Seawater/chemistry , Seawater/microbiology , Alcanivoraceae/genetics , Alteromonadaceae/genetics , Biodegradation, Environmental/drug effects , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Gulf of Mexico , Hydrocarbons/metabolism , Marinobacter/genetics , Petroleum/metabolism , RNA, Ribosomal, 16S/genetics , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 28(6): 6758-6770, 2021 Feb.
Article En | MEDLINE | ID: mdl-33009611

Heavy metal exposure in humans and animals commonly occurs through the consumption of metal-contaminated drinking water and food. Although many studies have focused on the remediation of metals by purification of water using sorbents, limited therapeutic sorbent strategies have been developed to minimize human and animal exposures to contaminated water and food. To address this need, a medical grade activated carbon (MAC) and an acid processed montmorillonite clay (APM) were characterized for their ability to bind heavy metals and mixtures. Results of screening and adsorption/desorption isotherms showed that binding plots for arsenic, cadmium, and mercury sorption on surfaces of MAC (and lead on APM) fit the Langmuir model. The highest binding percentage, capacity, and affinity were shown in a simulated stomach model, and the lowest percentage desorption (< 18%) was shown in a simulated intestine model. The safety and protective ability of MAC and APM were confirmed in a living organism (Hydra vulgaris) where 0.1% MAC significantly protected the hydra against As, Cd, Hg, and a mixture of metals by 30-70%. In other studies, APM showed significant reduction (75%) of Pd toxicity, compared with MAC and heat-collapsed APM, suggesting that the interlayer of APM was important for Pb sorption. This is the first report showing that edible sorbents can bind mixtures of heavy metals in a simulated gastrointestinal tract and prevent their toxicity in a living organism. Graphical abstract.


Arsenic , Mercury , Metals, Heavy , Adsorption , Animals , Bentonite , Cadmium , Charcoal , Clay , Humans , Lead
5.
Environ Sci Pollut Res Int ; 27(36): 45270-45281, 2020 Dec.
Article En | MEDLINE | ID: mdl-32789631

Deep-water column micronekton play a key role in oceanic food webs and represent an important trophic link between deep- and shallow-water ecosystems. Thus, the potential impacts of sub-surface hydrocarbon plumes on these organisms are critical to developing a more complete understanding of ocean-wide effects resulting from deep-sea oil spills. This work was designed to advance the understanding of hydrocarbon toxicity in several ecologically important deep-sea micronekton species using controlled laboratory exposures aimed at determining lethal threshold exposure levels. The current study confirmed the results previously determined for five deep-sea micronekton by measuring lethal threshold levels for phenanthrene between 81.2 and 277.5 µg/L. These results were used to calibrate the target lipid model and to calculate a critical target lipid body burden for each species. In addition, an oil solubility model was used to predict the acute toxicity of MC252 crude oil to vertically migrating crustaceans, Janicella spinacauda and Euphausiidae spp., and to compare the predictions with results of a 48-h constant exposure toxicity test with passive-dosing. Results confirmed that the tested deep-sea micronekton appear more sensitive than many other organisms when exposed to dissolved oil, but baseline stress complicated interpretation of results.


Petroleum Pollution , Petroleum , Phenanthrenes , Water Pollutants, Chemical , Animals , Ecosystem , Oceans and Seas , Petroleum/analysis , Petroleum/toxicity , Petroleum Pollution/analysis , Phenanthrenes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Mar Pollut Bull ; 151: 110804, 2020 Feb.
Article En | MEDLINE | ID: mdl-32056599

Here, we report results from a 15-day mesocosm experiment examining changes in estimated oil equivalents (EOEs), n-alkanes (n-C10 to n-C35), polycyclic aromatic hydrocarbons (PAHs) and petroleum biomarkers. Water accommodated fractions (WAF) of oil and diluted chemically enhanced WAF (DCEWAF) were prepared and concentrations of oil residues determined on day 0, 3 and 15, respectively. Significant removals of n-alkane and PAHs were observed starting from day 3. The n-C17/pristane and n-C18/phytane ratios suggested that the n-alkane removal was due to biodegradation in the mesocosms. The ratios of C2-dibenzothiophenes/C2-phenanthrenes (D2/P2) and C3-dibenzothiophenes/C3-phenanthrenes (D3/P3) were found to be stable through the experiment. DCEWAF treatment had longer half-lives for most n-alkanes but shorter half-lives for most PAHs than the WAF treatment. Most petroleum biomarkers were stable throughout the experiment. However, depletion of TAS (tricyclic aromatic steroids) was observed on day 15 of DCEWAF treatment.


Ecosystem , Petroleum Pollution , Petroleum , Surface-Active Agents , Water Pollutants, Chemical , Hydrocarbons , Polycyclic Aromatic Hydrocarbons
7.
Mar Pollut Bull ; 150: 110713, 2020 Jan.
Article En | MEDLINE | ID: mdl-31757392

The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets. Both the chemical and physical form of oil will affect the biological response. We present data from a mesocosm study comparing the microbial response to the water-soluble fraction (WSF), versus a water-accommodated fraction of oil (WAF), which contains both dispersed and dissolved oil components. WAF and WSF contained similar concentrations of low molecular weight PAHs, but concentrations of 4- and 5-ring PAHs were higher in WAF compared to WSF. Microbial communities were significantly different between WSF and WAF treatments, primary productivity was reduced more in WSF than in WAF, and concentrations of transparent exopolymeric particles were highest in WSF and lowest in the controls. These differences highlight the importance of dosing strategy for mesocosm and toxicity tests.


Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Toxicity Tests , Water
8.
Heliyon ; 5(1): e01174, 2019 Jan.
Article En | MEDLINE | ID: mdl-30775571

Chemical characterization of the presence of oil in environmental samples are performed using methods of varying complexity. Extraction of samples with an organic solvent and analysis by fluorescence spectrometry has been shown to be a rapid and effective screening technique for petroleum in the environment. During experiments, rapid analysis of oil by fluorescence provides the opportunity for researchers to modify the experimental conditions in real time. Estimated Oil Equivalents (EOE) relies on the fluorescence measurement of the aromatic compounds to estimate the oil concentration. The present intercalibration study was designed to investigate whether different fluorometer instruments can reliably measure EOE and whether the results are intercomparable. Additionally, the need for extraction of oil compounds into an organic solvent was investigated. Three different fluorometers were used in three different laboratories: a Horiba Aqualog, a Turner Trilogy and a Shimadzu Spectrofluorophotometer RF-1501. Results from these different instruments showed excellent agreement for EOE determinations. A very high correlation was found between the EOE results obtained with Aqualog Horiba and Turner Trilogy (r2 = 0.9999), with no significant differences between the mean EOE results (t-test, p = 0.30), and the Aqualog Horiba and Shimadzu (r2 = 0.995) fluorometers, with no statistically difference between the EOE results obtained by the two instruments (p = 0.40).

9.
Environ Toxicol Chem ; 37(11): 2810-2819, 2018 11.
Article En | MEDLINE | ID: mdl-30178489

The Chemical Response to Oil Spill: Ecological Effects Research Forum's water accommodated fraction procedure was compared with 2 alternative techniques in which crude oil was passively dosed from silicone tubing or O-rings. Fresh Macondo oil (MC252) was dosed at 30 mg/L using each approach to investigate oil dissolution kinetics, which was monitored by fluorometry as estimated oil equivalents (EOEs). Subsequent experiments with each dosing method were then conducted at multiple oil loadings. Following equilibration, test media were analytically characterized for polyaromatic hydrocarbons (PAHs) using gas chromatography (GC)-mass spectrometry and dissolved oil using biomimetic solid-phase microextraction (SPME). The results showed that equilibrium was achieved within 72 h for all methods. Measured PAH concentrations were compared with oil solubility model predictions of dissolved exposures. The concentration and composition of measured and predicted dissolved PAHs varied with oil loading and were consistent between dosing methods. Two-dimensional GC compositional data for this oil were then used to calculate dissolved toxic units for predicting MC252 oil acute toxicity across the expected range of species sensitivities. Predicted toxic units were nonlinear with loading and correlated to both EOE and biomimetic SPME. Passive dosing methods provide a practical strategy to deliver and maintain dissolved oil concentrations while avoiding the complicating role that droplets can introduce in exposure characterization and test interpretation. Environ Toxicol Chem 2018;37:2810-2819. © 2018 SETAC.


Chemical Fractionation/methods , Environmental Exposure/analysis , Petroleum Pollution/analysis , Petroleum/toxicity , Water/chemistry , Gas Chromatography-Mass Spectrometry , Kinetics , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Microextraction , Solubility , Water Pollutants, Chemical/toxicity
10.
Sci Total Environ ; 624: 517-529, 2018 May 15.
Article En | MEDLINE | ID: mdl-29268224

Salt marsh sediments generally undergo steady accumulation over time and thus are widely used to reconstruct the depositional histories of various anthropogenic contaminants derived from atmospheric and fluvial sources. Major hurricanes can significantly affect coastal landscapes by eroding and re-distributing sediment. Thus, each major hurricane can leave distinct signals in coastal wetland sediments. On the other hand, early-diagenetic remobilization of Fe and Mn in organic rich marsh sediment is a common phenomenon. However, remobilization of Fe and Mn across the redox boundary can induce remobilization of other trace elements and thus can disturb their depositional histories. Four short (~1m) sediment cores were collected from the fringing marshes of St. Louis Bay, Mississippi (located ~30km east of Hurricane Katrina's track) during 2010-2011 to investigate possible impacts of Hurricane Katrina (2005), and early-diagenetic remobilization of Fe and Mn, on trace metal and dioxin depositional histories in these sediments. Results from 210Pb, 137Cs, stable Cs, particulate organic carbon (POC), sediment bulk density and grain size indicate significant impact of hurricane event layers on anthropogenic stable Cs, while deposition profiles of V, Ni and Cr are impacted by Fe and Mn remobilization to a limited extent.

11.
Heliyon ; 3(10): e00419, 2017 Oct.
Article En | MEDLINE | ID: mdl-29034339

Marine oil snow (MOS) formation is a mechanism to transport oil from the ocean surface to sediments. We describe here the use of 110L mesocosms designed to mimic oceanic parameters during an oil spill including the use of chemical dispersants in order to understand the processes controlling MOS formation. These experiments were not designed to be toxicity tests but rather to illustrate mechanisms. This paper focuses on the development of protocols needed to conduct experiments under environmentally relevant conditions to examine marine snow and MOS. The experiments required the production of over 500 liters of water accommodated fraction (WAF), chemically enhanced water accommodated fraction of oil (CEWAF) as well as diluted CEWAF (DCEWAF). A redesigned baffled (170 L) recirculating tank (BRT) system was used. Two mesocosm experiments (M1 and M2) were run for several days each. In both M1 and M2, marine snow and MOS was formed in controls and all treatments respectively. Estimated oil equivalent (EOE) concentrations of CEWAF were in the high range of concentrations reported during spills and field tests, while WAF and DCEWAF concentrations were within the range of concentrations reported during oil spills. EOE decreased rapidly within days in agreement with historic data and experiments.

12.
Environ Toxicol Chem ; 36(12): 3415-3423, 2017 12.
Article En | MEDLINE | ID: mdl-28731272

There are few studies that have evaluated hydrocarbon toxicity to vertically migrating deep-sea micronekton. Crustaceans were collected alive using a 9-m2 Tucker trawl with a thermally insulated cod end and returned to the laboratory in 10 °C seawater. Toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to Americamysis bahia, Janicella spinacauda, Systellaspis debilis, Sergestes sp., Sergia sp., and a euphausiid species was assessed in a constant exposure toxicity test utilizing a novel passive dosing toxicity testing protocol. The endpoint of the median lethal concentration tests was mortality, and the results revealed high sensitivity of the deep-sea micronekton compared with other species for which these data are available. Threshold concentrations were also used to calculate critical target lipid body burdens using the target lipid model. Environ Toxicol Chem 2017;36:3415-3423. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Crustacea/drug effects , Naphthalenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brazil , Crustacea/chemistry , Lipid Droplets/chemistry , Seawater , Toxicity Tests
13.
PLoS One ; 11(8): e0161032, 2016.
Article En | MEDLINE | ID: mdl-27532207

The genome of Rhodococcus opacus strain M213, isolated from a fuel-oil contaminated soil, was sequenced and annotated which revealed a genome size of 9,194,165 bp encoding 8680 putative genes and a G+C content of 66.72%. Among the protein coding genes, 71.77% were annotated as clusters of orthologous groups of proteins (COGs); 55% of the COGs were present as paralog clusters. Pulsed field gel electrophoresis (PFGE) analysis of M213 revealed the presence of three different sized replicons- a circular chromosome and two megaplasmids (pNUO1 and pNUO2) estimated to be of 750Kb 350Kb in size, respectively. Conversely, using an alternative approach of optical mapping, the plasmid replicons appeared as a circular ~1.2 Mb megaplasmid and a linear, ~0.7 Mb megaplasmid. Genome-wide comparative analysis of M213 with a cohort of sequenced Rhodococcus species revealed low syntenic affiliation with other R. opacus species including strains B4 and PD630. Conversely, a closer affiliation of M213, at the functional (COG) level, was observed with the catabolically versatile R. jostii strain RHA1 and other Rhodococcii such as R. wratislaviensis strain IFP 2016, R. imtechensis strain RKJ300, Rhodococcus sp. strain JVH1, and Rhodococcus sp. strain DK17, respectively. An in-depth, genome-wide comparison between these functional relatives revealed 971 unique genes in M213 representing 11% of its total genome; many associating with catabolic functions. Of major interest was the identification of as many as 154 genomic islands (GEIs), many with duplicated catabolic genes, in particular for PAHs; a trait that was confirmed by PCR-based identification of naphthalene dioxygenase (NDO) as a representative gene, across PFGE-resolved replicons of strain M213. Interestingly, several plasmid/GEI-encoded genes, that likely participate in degrading naphthalene (NAP) via a peculiar pathway, were also identified in strain M213 using a combination of bioinformatics, metabolic analysis and gene expression measurements of selected catabolic genes by RT-PCR. Taken together, this study provides a comprehensive understanding of the genome plasticity and ecological competitiveness of strain M213 likely facilitated by horizontal gene transfer (HGT), bacteriophage attacks and genomic reshuffling- aspects that continue to be understudied and thus poorly understood, in particular for the soil-borne Rhodococcii.


Naphthalenes/metabolism , Rhodococcus/genetics , Rhodococcus/metabolism , Bacterial Proteins/genetics , Biodegradation, Environmental , Dioxygenases/genetics , Environmental Pollutants/metabolism , Gene Rearrangement , Genome, Bacterial , Genomic Islands , Metabolic Networks and Pathways/genetics , Multienzyme Complexes/genetics , Phylogeny , Replicon , Rhodococcus/isolation & purification , Soil Microbiology , Species Specificity
...