Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Oral Pathol Med ; 50(10): 985-994, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33896033

RESUMEN

BACKGROUND: Head and neck squamous cell carcinoma (HNSC) etiopathogenesis remains unclear, and the biological changes with the activation of heat shock proteins (HSPs) and prion protein (PRNP) promoted by hypoxia in HNSC are undetermined. This study investigates hypoxia's effect in lymph node metastasis by PRNP expression changes and its main partners. METHODS: The study combined a theoretical/cell culture study with a case-control study. First, bioinformatics and cell culture were performed. A case-control study was performed in a second step by comparing HNSC patients with and without lymph node metastasis. ANALYSES: The Cancer Genome Atlas (TCGA) data source validates the theory in the global population study. RESULTS: Bioinformatics analysis suggests that hypoxia-inducible factor-1α (HIF1A) is associated with HSPA4, HSP90AA1 and PRNP expression. TCGA data validate the hypothesis that higher HSP90AA1, HSPA4 and PRNP are related to metastases and low survival. Herein, the cell study demonstrated that muted PRNP did not respond to hypoxia. DISCUSSION: Our results collectively provide the first evidence that PRNP promotes HNSC lymph node metastasis progression through the upregulation of HSPA4, HSP90AA1 and HIF1A. Our findings may provide a molecular basis for the promoting Role of PRNP in HNSC progression.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Priónicas , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Neoplasias de Cabeza y Cuello/genética , Humanos , Proteínas Priónicas/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
2.
Biochem J ; 474(17): 2981-2991, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28739602

RESUMEN

Prion protein (PrPC) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrPC in the response to insulin and obesity development. Two independent PrPC knockout (KO) and one PrPC overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrPC KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrPC KO mice and increased in TG20 animals. PrPC KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrPC reflects susceptibility to the development of insulin resistance and metabolic syndrome.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Obesidad/metabolismo , PPAR gamma/metabolismo , Proteínas PrPC/metabolismo , Proteínas Priónicas/metabolismo , Células 3T3-L1 , Animales , Membrana Celular/metabolismo , Membrana Celular/patología , Células Cultivadas , Cruzamientos Genéticos , Dieta Alta en Grasa/efectos adversos , Embrión de Mamíferos/patología , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/etiología , Obesidad/patología , PPAR gamma/genética , Proteínas PrPC/genética , Proteínas Priónicas/genética , Transporte de Proteínas , Aumento de Peso
3.
Cell Mol Life Sci ; 70(17): 3211-27, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23543276

RESUMEN

The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Choque Térmico/metabolismo , Vesículas Secretoras/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Hipocampo/citología , Immunoblotting , Ratones , Proteínas PrPC/metabolismo , Vesículas Secretoras/ultraestructura
4.
J Neurochem ; 124(2): 210-23, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23145988

RESUMEN

Prion protein (PrP(C)) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrP(C) interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrP(C) co-opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross-talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrP(C)-mediated axonogenesis in peripheral neurons in response to STI1 and laminin-γ1 chain-derived peptide (Ln-γ1). STI1 and Ln-γ1 promoted robust axonogenesis in wild-type neurons, whereas no effect was observed in neurons from PrP(C) -null mice. PrP(C) binding to Ln-γ1 or STI1 led to an increase in intracellular Ca(2+) levels via distinct mechanisms: STI1 promoted extracellular Ca(2+) influx, and Ln-γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln-γ1, but depends on, C-type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrP(C)-mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrP(C). These results suggest a role for PrP(C) as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.


Asunto(s)
Señalización del Calcio/fisiología , Ganglios Espinales/fisiología , Proteínas de Choque Térmico/fisiología , Laminina/fisiología , Proteínas PrPC/fisiología , Receptor Cross-Talk/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Axones/química , Axones/fisiología , Supervivencia Celular/fisiología , Líquido Extracelular/química , Líquido Extracelular/fisiología , Ganglios Espinales/química , Proteínas de Choque Térmico/química , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Laminina/metabolismo , Ratones , Ratones Noqueados , Cultivo Primario de Células , Unión Proteica/fisiología , Células Receptoras Sensoriales/química , Regulación hacia Arriba/fisiología
5.
J Biol Chem ; 287(52): 43777-88, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23132868

RESUMEN

Prions, the agents of transmissible spongiform encephalopathies, require the expression of prion protein (PrP(C)) to propagate disease. PrP(C) is converted into an abnormal insoluble form, PrP(Sc), that gains neurotoxic activity. Conversely, clinical manifestations of prion disease may occur either before or in the absence of PrP(Sc) deposits, but the loss of normal PrP(C) function contribution for the etiology of these diseases is still debatable. Prion disease-associated mutations in PrP(C) represent one of the best models to understand the impact of PrP(C) loss-of-function. PrP(C) associates with various molecules and, in particular, the interaction of PrP(C) with laminin (Ln) modulates neuronal plasticity and memory formation. To assess the functional alterations associated with PrP(C) mutations, wild-type and mutated PrP(C) proteins were expressed in a neural cell line derived from a PrP(C)-null mouse. Treatment with the laminin γ1 chain peptide (Ln γ1), which mimics the Ln binding site for PrP(C), increased intracellular calcium in cells expressing wild-type PrP(C), whereas a significantly lower response was observed in cells expressing mutated PrP(C) molecules. The Ln γ1 did not promote process outgrowth or protect against staurosporine-induced cell death in cells expressing mutated PrP(C) molecules in contrast to cells expressing wild-type PrP(C). The co-expression of wild-type PrP(C) with mutated PrP(C) molecules was able to rescue the Ln protective effects, indicating the lack of negative dominance of PrP(C) mutated molecules. These results indicate that PrP(C) mutations impair process outgrowth and survival mediated by Ln γ1 peptide in neural cells, which may contribute to the pathogenesis of genetic prion diseases.


Asunto(s)
Laminina/metabolismo , Proteínas PrPC/metabolismo , Animales , Sitios de Unión , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Inhibidores Enzimáticos/farmacología , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Laminina/genética , Ratones , Ratones Mutantes , Mutación , Proteínas PrPC/genética , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Estaurosporina/farmacología
6.
FASEB J ; 25(1): 265-79, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20876210

RESUMEN

The prion protein (PrP(C)) is highly expressed in the nervous system, and its abnormal conformer is associated with prion diseases. PrP(C) is anchored to cell membranes by glycosylphosphatidylinositol, and transmembrane proteins are likely required for PrP(C)-mediated intracellular signaling. Binding of laminin (Ln) to PrP(C) modulates neuronal plasticity and memory. We addressed signaling pathways triggered by PrP(C)-Ln interaction in order to identify transmembrane proteins involved in the transduction of PrP(C)-Ln signals. The Ln γ1-chain peptide, which contains the Ln binding site for PrP(C), induced neuritogenesis through activation of phospholipase C (PLC), Ca(2+) mobilization from intracellular stores, and protein kinase C and extracellular signal-regulated kinase (ERK1/2) activation in primary cultures of neurons from wild-type, but not PrP(C)-null mice. Phage display, coimmunoprecipitation, and colocalization experiments showed that group I metabotropic glutamate receptors (mGluR1/5) associate with PrP(C). Expression of either mGluR1 or mGluR5 in HEK293 cells reconstituted the signaling pathways mediated by PrP(C)-Ln γ1 peptide interaction. Specific inhibitors of these receptors impaired PrP(C)-Ln γ1 peptide-induced signaling and neuritogenesis. These data show that group I mGluRs are involved in the transduction of cellular signals triggered by PrP(C)-Ln, and they support the notion that PrP(C) participates in the assembly of multiprotein complexes with physiological functions on neurons.


Asunto(s)
Laminina/metabolismo , Neuritas/fisiología , Proteínas PrPC/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/fisiología , Animales , Benzoatos/farmacología , Calcio/metabolismo , Células Cultivadas , Femenino , Glicina/análogos & derivados , Glicina/farmacología , Células HEK293 , Humanos , Immunoblotting , Laminina/genética , Laminina/farmacología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuritas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas PrPC/genética , Unión Proteica , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/genética , Fosfolipasas de Tipo C/metabolismo
7.
J Pineal Res ; 50(1): 64-70, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20964707

RESUMEN

Calcium (Ca(2+) ) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra-erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca(2+) . Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca(2+) and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P. chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca(2+) within the parasite, because buffering Ca(2+) changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca(2+) signals within the parasite, as did the application of a membrane-permeant analogue of cAMP. Our data suggest that P. chabaudi engages both Ca(2+) and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca(2+) evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Melatonina/farmacología , Plasmodium chabaudi/enzimología , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Malaria/parasitología , Ratones , Microscopía Confocal
8.
J Biol Chem ; 285(47): 36542-50, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20837487

RESUMEN

The prion protein (PrP(C)) is a conserved glycosylphosphatidylinositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrP(C)-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that α-bungarotoxin, a specific inhibitor for α7 nicotinic acetylcholine receptor (α7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when α7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C)·α7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Proteínas PrPC/fisiología , Receptores Nicotínicos/metabolismo , Animales , Apoptosis , Western Blotting , Proliferación Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Proteínas de Choque Térmico/genética , Hipocampo/citología , Humanos , Inmunoprecipitación , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/citología , Unión Proteica , ARN Mensajero/genética , Receptores Nicotínicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Nicotínico de Acetilcolina alfa 7
9.
Curr Issues Mol Biol ; 12(2): 63-86, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19767651

RESUMEN

PrP(C) is highly expressed in both the central and peripheral nervous systems from early stages of development and in adulthood. Its major conformational change and conversion into an abnormal form (PrP(Sc)) has been associated with the generation of prions, the infectious agent of transmissible spongiform encephalopathies (TSEs). The massive neurodegeneration presented by individuals suffering from these diseases has been associated with the gain of neurotoxic activity of PrP(Sc). On the other hand, major neurodegeneration is also observed in transgenic mice expressing PrP(C) molecules deleted of specific domains, which points to important functional domains within this molecule, and supports the hypothesis that loss-of PrP(C) function may contribute to the pathogenesis of TSEs. Furthermore, a large body of data demonstrates direct or indirect interaction of PrP(C) with extracellular matrix proteins, soluble factors, transmembrane proteins, G-protein coupled receptors and ions channels. The ability of PrP(C) to drive the assembly of multi-component complexes at the cell surface is likely the basis for its neurotrophic functions. These properties indicate that PrP(C) may be relevant for not only the spongiform encephalopathies, but also as an ancillary component of the pathogenesis of other neurodegenerative diseases, and therefore amenable to therapeutic targeting.


Asunto(s)
Priones/metabolismo , Animales , Humanos , Ratones , Modelos Genéticos , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Enfermedades por Prión/etiología , Enfermedades por Prión/metabolismo , Priones/genética
10.
J Pineal Res ; 43(4): 360-4, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17910604

RESUMEN

The malarial parasite senses the environment to modulate its own cycle. Knowledge of the mechanisms for regulation signaling processes at the invasion, maturation, as well as division of Plasmodium falciparum before reinvasion would represent a major breakthrough and, therefore, might open new avenues for therapy. We have previously reported that melatonin modulates the circadian rhythm of malarial parasites through the activation of phospholipase C (PLC), production of InsP3, and induction of calcium release from intracellular stores. To further investigate the molecular mechanism of melatonin's action, we have used the InsP3 modulator 2-aminoethyl diphenylborinate (2-APB) given in a culture of P. falciparum parasites. Here we show that the melatonin acts on Plasmodium cell cycle through InsP3 signaling as 2-APB blocks melatonin's effect on calcium release. The function of the InsP3 signaling can be regarded as an important event for parasite invasion and maturation process, since addition of the PLC inhibitor, U73122 into Plasmodium-infected red blood cells impairs parasite invasion in vitro. By using 8BrcAMP, we also report here that Plasmodia displays a 'capacitative calcium entry' mechanism for amplification of calcium signals throughout the cytoplasm.


Asunto(s)
Compuestos de Boro/farmacología , Calcio/metabolismo , Melatonina/farmacología , Plasmodium falciparum/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Estrenos/farmacología , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Malaria/parasitología , Plasmodium falciparum/citología , Plasmodium falciparum/metabolismo , Pirrolidinonas/farmacología
11.
BMC Physiol ; 7: 7, 2007 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-17716375

RESUMEN

BACKGROUND: We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. RESULTS: Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. CONCLUSION: T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracellular medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.


Asunto(s)
Evolución Biológica , Señalización del Calcio/fisiología , Eritrocitos/fisiología , Lagartos/clasificación , Lagartos/fisiología , Animales , Eritrocitos/clasificación , Eritrocitos/citología , Mitocondrias/clasificación , Mitocondrias/fisiología
12.
J Pineal Res ; 39(3): 224-30, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16150101

RESUMEN

Intraerythrocytic malaria parasites develop in a highly synchronous manner. We have previously shown that the host hormone melatonin regulates the circadian rhythm of the rodent malaria parasite, Plasmodium chabaudi, through a Ca2+-based mechanism. Here we show that melatonin and other molecules derived from tryptophan, i.e. N-acetylserotonin, serotonin and tryptamine, also modulate the cell cycle of human malaria parasite P. falciparum by inducing an increase in cytosolic free Ca2+. This occurs independently of the extracellular Ca2+ concentration, indicating that these molecules induce Ca2+ mobilization from intracellular stores in the trophozoite. This in turn leads to an increase in the proportion of schizonts. The effects of the indolamines in increasing cytosolic free Ca2+ and modulating the parasite cell cycle are both abrogated by an antagonist of the melatonin receptor, luzindole, and by the phospholipase inhibitor, U73122.


Asunto(s)
Calcio/metabolismo , Ciclo Celular/fisiología , Plasmodium falciparum/citología , Plasmodium falciparum/fisiología , Triptófano/fisiología , Animales , Células Cultivadas , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Plasmodium falciparum/crecimiento & desarrollo , Serotonina/metabolismo , Serotonina/fisiología , Triptaminas/metabolismo , Triptaminas/fisiología , Triptófano/metabolismo
13.
J Cell Biol ; 170(4): 551-7, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16103224

RESUMEN

The host hormone melatonin increases cytoplasmic Ca(2+) concentration and synchronizes Plasmodium cell cycle (Hotta, C.T., M.L. Gazarini, F.H. Beraldo, F.P. Varotti, C. Lopes, R.P. Markus, T. Pozzan, and C.R. Garcia. 2000. Nat. Cell Biol. 2:466-468). Here we show that in Plasmodium falciparum melatonin induces an increase in cyclic AMP (cAMP) levels and cAMP-dependent protein kinase (PKA) activity (40 and 50%, respectively). When red blood cells infected with P. falciparum are treated with cAMP analogue adenosine 3',5'-cyclic monophosphate N6-benzoyl/PKA activator (6-Bz-cAMP) there is an alteration of the parasite cell cycle. This effect appears to depend on activation of PKA (abolished by the PKA inhibitors adenosine 3',5'-cyclic monophosphorothioate/8 Bromo Rp isomer, PKI [cell permeable peptide], and H89). An unexpected cross talk was found to exist between the cAMP and the Ca(2+)-dependent signaling pathways. The increases in cAMP by melatonin are inhibited by blocker of phospholipase C U73122, and addition of 6-Bz-cAMP increases cytosolic Ca(2+) concentration, through PKA activation. These findings suggest that in Plasmodium a highly complex interplay exists between the Ca(2+) and cAMP signaling pathways, but also that the control of the parasite cell cycle by melatonin requires the activation of both second messenger controlled pathways.


Asunto(s)
Calcio/metabolismo , Ciclo Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Melatonina/farmacología , Plasmodium falciparum/citología , Plasmodium falciparum/efectos de los fármacos , Sistemas de Mensajero Secundario , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Microscopía Confocal , Modelos Biológicos , Parásitos/citología , Parásitos/efectos de los fármacos , Parásitos/enzimología , Plasmodium falciparum/enzimología , Transducción de Señal/efectos de los fármacos , Fosfolipasas de Tipo C/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA