Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Vis Exp ; (169)2021 03 09.
Article En | MEDLINE | ID: mdl-33779613

Pretreatment is still the most expensive step in lignocellulosic biorefinery processes. It must be made cost-effective by minimizing chemical requirements as well as power and heat consumption and by using environment-friendly solvents. Deep eutectic solvents (DESs) are key, green, and low-cost solvents in sustainable biorefineries. They are transparent mixtures characterized by low freezing points resulting from at least one hydrogen bond donor and one hydrogen bond acceptor. Although DESs are promising solvents, it is necessary to combine them with an economic heating technology, such as microwave irradiation, for competitive profitability. Microwave irradiation is a promising strategy to shorten the heating time and boost fractionation because it can rapidly attain the appropriate temperature. The aim of this study was to develop a one-step, rapid method for biomass fractionation and lignin extraction using a low-cost and biodegradable solvent. In this study, a microwave-assisted DES pretreatment was conducted for 60 s at 800 W, using three kinds of DESs. The DES mixtures were facilely prepared from choline chloride (ChCl) and three hydrogen-bond donors (HBDs): a monocarboxylic acid (lactic acid), a dicarboxylic acid (oxalic acid), and urea. This pretreatment was used for biomass fractionation and lignin recovery from marine residues (Posidonia leaves and aegagropile), agri-food byproducts (almond shells and olive pomace), forest residues (pinecones), and perennial lignocellulosic grasses (Stipa tenacissima). Further analyses were conducted to determine the yield, purity, and molecular weight distribution of the recovered lignin. In addition, the effect of DESs on the chemical functional groups in the extracted lignin was determined by Fourier-transform infrared (FTIR) spectroscopy. The results indicate that the ChCl-oxalic acid mixture affords the highest lignin purity and the lowest yield. The present study demonstrates that the DES-microwave process is an ultrafast, efficient, and cost-competitive technology for lignocellulosic biomass fractionation.


Lignin/therapeutic use , Animals
2.
Front Chem ; 8: 479, 2020.
Article En | MEDLINE | ID: mdl-32582644

Cannabis sp. and Euphorbia sp. are potential candidates as indoor culture for the extraction of their high value-added metabolites for pharmaceutical applications. Both residual lignocellulosic materials recovered after extraction are studied in the present article as single or mixed feedstocks for a closed-loop bioprocesses cascade. An alkaline process (NaOH 3%, 30 min 160°C) is performed to separate the studied biomasses into their main components: lignin and cellulose. Results highlight the advantages of the multi-feedstocks approach over the single biomass in term of lignin yield and purity. Since the structural characteristics of lignin affect the potential applications, a particular attention is drawn on the comprehension of lignin structure alteration and the possible interaction between them during single or mixed feedstocks treatment. FTIR and 2D-NMR spectra revealed similar profiles in term of chemical functions and structure rather than novel chemical bonds formation inexistent in the original biomasses. In addition, thermal properties and molecular mass distribution are conserved whether hemp or euphorbia are single treated or in combination. A second treatment was applied to investigate the effect of prolonged treatment on extracted lignins and the possible interactions. Aggregation, resulting in higher molecular mass, is observed whatever the feedstocks combination. However, mixing biomass does not affect chemical structures of the end product. Therefore, our paper suggests the possibility of gathering lignocellulosic residues during alkali process for lignin extraction and valorization, allowing to forecast lignin structure and make assumptions regarding potential valorization pathway.

3.
Anal Chem Insights ; 11: 49-57, 2016.
Article En | MEDLINE | ID: mdl-27547032

Honey polyphenols have been studied with the objective of relating honeys to their floral sources. Initially synthesized by plant, these polyphenols can be found in the plant's nectar, which are collected by bees, which convert the nectar into honey. Consequently, polyphenols constitute minor components of honey. The development of a solid-phase extraction method for honey polyphenols is presented in this study. The technique employs Amberlite XAD-2 adsorbent and was tested on monofloral honeys from six different plants: acacia, chestnut, eucalyptus, thyme, sunflower, and wild carrot. Analyses were performed using high-performance liquid chromatography coupled with UV detection and mass spectrometry. Several phenolic acids and flavonoids were identified: caffeic and p-coumaric acids, quercetin, kaempferol, naringenin, chrysin, and pinocembrin. Generally, the quantity of a given polyphenol in the honey was around 0.2 mg/100 g of honey, except for chestnut honey, which contained around 3.0 mg of p-coumaric acid/100 g of honey. Analyses highlighted significant formation of cis isomers for phenolic acids during the extraction despite protection from light.

...