Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spine J ; 24(7): 1323-1333, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38307174

RESUMEN

BACKGROUND CONTEXT: Oblique lumbar interbody fusion (OLIF) can provide an ideal minimally invasive solution for achieving spinal fusion in an older, more frail population where decreased bone quality can be a limiting factor. Stabilization can be achieved with bilateral pedicle screws (BPS), which require additional incisions and longer operative time. Alternatively, a novel self-anchoring stand-alone lateral plate system (SSA) can be used, where no additional incisions are required. Based on the relevant literature, BPS constructs provide greater primary biomechanical stability compared to lateral plate constructs, including SSA. This difference is further increased by osteoporosis. Screw augmentation in spinal fusion surgeries is commonly used; however, in the case of OLIF, it is a fairly new concept, lacking a consensus-based guideline. PURPOSE: This comparative finite element (FE) study aimed to investigate the effect of PMMA screw augmentation on the primary stability of a stand-alone implant construct versus posterior stabilization in OLIF with osteoporotic bone quality. STUDY DESIGN: The biomechanical effect of screw augmentation was studied inside an in-silico environment using computer-aided FE analysis. METHODS: A previously validated and published L2-L4 FE model with normal and osteoporotic bone material properties was used. Geometries based on the OLIF implants (BPS, SSA) were created and placed inside the L3-L4 motion segment with increasing volumes (1-6 cm3) of PMMA augmentation. A follower load of 400 N and 10 Nm bending moment (in the three anatomical planes) were applied to the surgical FE models with different bone material properties. The operated L3-L4 segmental range of motion (ROM), the inserted cage's maximal caudal displacements, and L4 cranial bony endplate principal stress values were measured. RESULTS: The nonaugmented values for the BPS construct were generally lower compared to SSA, and the difference was increased by osteoporosis. In osteoporotic bone, PMMA augmentation gradually decreased the investigated parameters and the difference between the two constructs as well. Between 3 cm3 and 4 cm3 of injected PMMA volume per screw, the difference between augmented SSA and standard BPS became comparable. CONCLUSIONS: Based on this study, augmentation can enhance the primary stability of the constructs and decrease the difference between them. Considering leakage as a possible complication, between 3 cm3 and 4 cm3 of injected PMMA per screw can be an adequate amount for SSA augmentation. However, further in silico, and possibly in vitro and clinical testing is required to thoroughly understand the investigated biomechanical aspects. CLINICAL SIGNIFICANCE: This study sheds light on the possible biomechanical advantage offered by augmented OLIF implants and provides a theoretical augmentation amount for the SSA construct. Based on the findings, the concept of an SSA device with PMMA augmentation capability is desirable.


Asunto(s)
Análisis de Elementos Finitos , Vértebras Lumbares , Osteoporosis , Tornillos Pediculares , Polimetil Metacrilato , Fusión Vertebral , Fusión Vertebral/métodos , Fusión Vertebral/instrumentación , Humanos , Vértebras Lumbares/cirugía , Osteoporosis/cirugía , Fenómenos Biomecánicos , Cementos para Huesos
2.
Sci Rep ; 13(1): 3293, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841834

RESUMEN

Percutaneous Cement Discoplasty (PCD) is a minimally invasive surgical technique to treat degenerated intervertebral discs. When the disc is severely degenerated, the vacuum observed in place of the nucleus pulposus can be filled with bone cement to restore the disc height, open the foramen space, and relieve pain. This study aimed to evaluate the foramen geometry change due to PCD, in the loaded spine. Cadaveric spines (n = 25) were tested in flexion and extension while Digital Image Correlation (DIC) measured displacements and deformations. Tests were performed on simulated pre-operative condition (nucleotomy) and after PCD. Registering DIC images and the 3D specimen geometry from CT scans, a 3D model of the specimens aligned in the experimental pose was obtained for nucleotomy and PCD. Foramen space volume was geometrically measured for both conditions. The volume of cement injected was measured to explore correlation with the change of foramen space. PCD induced a significant overall foraminal decompression in both flexion (foramen space increased by 835 ± 1289 mm3, p = 0.001) and extension (1205 ± 1106 mm3, p < 0.001), confirming that the expected improvements of PCD show also during spine motion. Furthermore, in extension when the foramen is the most challenged, the impact of PCD on the foramen correlated with the injected cement volume.


Asunto(s)
Cementos para Huesos , Disco Intervertebral , Humanos , Tomografía Computarizada por Rayos X , Dolor , Movimiento (Física) , Descompresión , Vértebras Lumbares
3.
Clin Spine Surg ; 36(7): E306-E310, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35945667

RESUMEN

STUDY DESIGN: Prospective cross-sectional cohort study. OBJECTIVES: The main purpose of this study was to evaluate the association between demographical, surgery-related and morphologic parameters, and the development or progress of adjacent segment degeneration (ASD) after short-segment lumbar fusions. SUMMARY OF BACKGROUND DATA: ASD is a major long-term complication after lumbar fusions. Possible risk factors are related to the patients' demographics, spinopelvic anatomy, or preoperative lumbar intervertebral disk conditions, but the role of these parameters is still not clear. METHODS: A prospective cross-sectional study of 100 patients who underwent 1- or 2-level open lumbar transforaminal interbody fusions due to a lumbar degenerative pathology was conducted. Demographical, radiologic findings, and magnetic resonance imaging features were analyzed to identify factors associated with ASD in 5-year follow-up. RESULTS: ASD patients showed higher level of pain ( P =0.004) and disability ( P =0.020) at follow-up. In univariate analysis, older age ( P =0.007), upper-level lumbar fusion ( P =0.007), lower L4-S1 lordosis ( P =0.039), pelvic incidence-lumbar lordosis mismatch ( P =0.021), Pfirrmann grade III or higher disk degeneration ( P =0.002), and the presence of disk bulge/protrusion ( P =0.007) were associated with ASD. In multivariate analysis, the presence of major degenerative sign (disk degeneration and/or disk bulge) was the significant predictor for developing ASD (odds ratio: 3.85, P =0.006). CONCLUSION: By examining the role of different patient- and procedure-specific factors, we found that preoperative major degenerative signs at the adjacent segment increase the risk of ASD causing significantly worse outcome after short-segment lumbar fusion. On the basis of our results, adjacent disk conditions should be considered carefully during surgical planning.


Asunto(s)
Degeneración del Disco Intervertebral , Desplazamiento del Disco Intervertebral , Lordosis , Fusión Vertebral , Humanos , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/etiología , Degeneración del Disco Intervertebral/cirugía , Estudios Transversales , Lordosis/diagnóstico por imagen , Lordosis/etiología , Estudios Prospectivos , Estudios Retrospectivos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Desplazamiento del Disco Intervertebral/cirugía , Factores de Riesgo
4.
Front Bioeng Biotechnol ; 10: 1040695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532589

RESUMEN

With the ageing of the population, there is an increasing need for minimally invasive spine surgeries to relieve pain and improve quality of life. Percutaneous Cement Discoplasty is a minimally invasive technique to treat advanced disc degeneration, including vacuum phenomenon. The present study aimed to develop an in vitro model of percutaneous cement discoplasty to investigate its consequences on the spine biomechanics in comparison with the degenerated condition. Human spinal segments (n = 27) were tested at 50% body weight in flexion and extension. Posterior disc height, range of motion, segment stiffness, and strains were measured using Digital Image Correlation. The cement distribution was also studied on CT scans. As main result, percutaneous cement discoplasty restored the posterior disc height by 41% for flexion and 35% for extension. Range of motion was significantly reduced only in flexion by 27%, and stiffness increased accordingly. The injected cement volume was 4.56 ± 1.78 ml (mean ± SD). Some specimens (n = 7) exhibited cement perforation of one endplate. The thickness of the cement mass moderately correlated with the posterior disc height and range of motion with different trends for flexions vs. extension. Finally, extreme strains on the discs were reduced by percutaneous cement discoplasty, with modified patterns of the distribution. To conclude, this study supported clinical observations in term of recovered disc height close to the foramen, while percutaneous cement discoplasty helped stabilize the spine in flexion and did not increase the risk of tissue damage in the annulus.

5.
Sci Rep ; 12(1): 20382, 2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36437349

RESUMEN

Standing radiographs play an important role in the characterization of spinal sagittal alignment, as they depict the spine under physiologic loading conditions. However, there is no commonly available method to apply the lumbar lordosis of standing radiographs to supine CT-based virtual 3D models of the lumbar spine. We aimed to develop a method for the sagittal rigid-body registration of vertebrae to standing radiographs, using the exact geometry reconstructed from CT-data. In a cohort of 50 patients with monosegmental spinal degeneration, segmentation and registration of the lumbar vertebrae and sacrum were performed by two independent investigators. Intersegmental angles and lumbar lordosis were measured both in CT scans and radiographs. Vertebrae were registered using the X-ray module of Materialise Mimics software. Postregistrational midsagittal sections were constructed of the sagittal midplane sections of the registered 3D lumbar spine geometries. Mean Hausdorff distance was measured between corresponding registered vertebral geometries. The registration process minimized the difference between the X-rays' and postregistrational midsagittal sections' lordoses. Intra- and inter-rater reliability was excellent based on angle and mean Hausdorff distance measurements. We propose an accessible, accurate, and reproducible method for creating patient-specific 3D geometries of the lumbar spine that accurately represent spinal sagittal alignment in the standing position.


Asunto(s)
Lordosis , Humanos , Lordosis/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Posición de Pie , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos
6.
BMC Musculoskelet Disord ; 23(1): 774, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964023

RESUMEN

BACKGROUND: Successfully surgically treating degenerative disc diseases can be challenging to the spine surgeons, the long-term outcome relies on both the physical and mental status of the patient before and after treatment. Numerous studies underlined the role of inflammatory cytokines - like interleukin 1B and 6 - in the development of chronic diseases such as failed back surgery syndrome (FBSS) and major depressive disorder (MDD) which alter the outcome after spinal surgery. Our aim was to evaluate the associations of IL6 and IL1B gene polymorphisms with the long-term outcome of degenerative lumbar spine surgeries. METHODS: An international genetical database (GENODISC) was combined with our institute's clinical database to create a large pool with long term follow up data. Altogether 431 patient's data were analysed. Patient reported outcome measures and surgical outcome was investigated in association with IL1B and IL6 SNPs with the help of 'SNPassoc' R genome wide association package. RESULTS: Interleukin 1B variants analysis confirmed association with improvement of pain after surgery on individual SNP level and on haplotype level, moreover relationship with patient reported outcome and preoperative level of depression was found on individual SNP level. IL6 variants were associated with preoperative depression, somatization and with subsequent surgery. CONCLUSION: Understanding the complexity of spinal surgery patients' long-term well-being is crucial in effectively treating chronic debilitating somatic diseases and the associated mental illnesses. Further studies should investigate more comprehensively the linkage of chronic physical and mental illnesses focusing on their simultaneous treatment.


Asunto(s)
Trastorno Depresivo Mayor , Síndrome de Fracaso de la Cirugía Espinal Lumbar , Interleucina-1beta/genética , Interleucina-6/genética , Degeneración del Disco Intervertebral , Estudio de Asociación del Genoma Completo , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/cirugía , Vértebras Lumbares/cirugía , Polimorfismo de Nucleótido Simple/genética
7.
Front Bioeng Biotechnol ; 9: 749914, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805108

RESUMEN

Introduction: In developed countries, the age structure of the population is currently undergoing an upward shift, resulting a decrease in general bone quality and surgical durability. Over the past decade, oblique lumbar interbody fusion (OLIF) has been globally accepted as a minimally invasive surgical technique. There are several stabilization options available for OLIF cage fixation such as self-anchored stand-alone (SSA), lateral plate-screw (LPS), and bilateral pedicle screw (BPS) systems. The constructs' stability are crucial for the immediate and long-term success of the surgery. The aim of this study is to investigate the biomechanical effect of the aforementioned constructs, using finite element analysis with different bone qualities (osteoporotic and normal). Method: A bi-segmental (L2-L4) finite element (FE) model was created, using a CT scan of a 24-year-old healthy male. After the FE model validation, CAD geometries of the implants were inserted into the L3-L4 motion segment during a virtual surgery. For the simulations, a 150 N follower load was applied on the models, then 10 Nm of torque was used in six general directions (flexion, extension, right/left bending, and right/left rotation), with different bone material properties. Results: The smallest segmental (L3-L4) ROM (range of motion) was observed in the BPS system, except for right bending. Osteoporosis increased ROMs in all constructs, especially in the LPS system (right bending increase: 140.26%). Osteoporosis also increased the caudal displacement of the implanted cage in all models (healthy bone: 0.06 ± 0.03 mm, osteoporosis: 0.106 ± 0.07 mm), particularly with right bending, where the displacement doubled in SSA and LPS constructs. The displacement of the screws inside the L4 vertebra increased by 59% on average (59.33 ± 21.53%) due to osteoporosis (100% in LPS, rotation). BPS-L4 screw displacements were the least affected by osteoporosis. Conclusions: The investigated constructs provide different levels of stability to the spine depending on the quality of the bone, which can affect the outcome of the surgery. In our model, the BPS system was found to be the most stable construct in osteoporosis. The presented model, after further development, has the potential to help the surgeon in planning a particular spinal surgery by adjusting the stabilization type to the patient's bone quality.

8.
Front Surg ; 8: 662919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124135

RESUMEN

Introduction: The number of patients with iatrogenic spinal deformities is increasing due to the increase in instrumented spinal surgeries globally. Correcting a deformity could be challenging due to the complex anatomical and geometrical irregularities caused by previous surgeries and spine degeneration. Virtual and 3D printed models have the potential to illuminate the unique and complex anatomical-geometrical problems found in these patients. Case Presentation: We present a case report with 6-months follow-up (FU) of a 71 year old female patient with severe sagittal and coronal malalignment due to repetitive discectomy, decompression, laminectomy, and stabilization surgeries over the last 39 years. The patient suffered from severe low back pain (VAS = 9, ODI = 80). Deformity correction by performing asymmetric 3-column pedicle subtraction osteotomy (PSO) and stabilization were decided as the required surgical treatment. To better understand the complex anatomical condition, a patient-specific virtual geometry was defined by segmentation based on the preoperative CT. The geometrical accuracy was tested using the Dice Similarity Index (DSI). A complex 3D virtual plan was created for the surgery from the segmented geometry in addition to a 3D printed model. Discussion: The segmentation process provided a highly accurate geometry (L1 to S2) with a DSI value of 0.92. The virtual model was shared in the internal clinical database in 3DPDF format. The printed physical model was used in the preoperative planning phase, patient education/communication and during the surgery. The surgery was performed successfully, and no complications were registered. The measured change in the sagittal vertical axis was 7 cm, in the coronal plane the distance between the C7 plumb line and the central sacral vertical line was reduced by 4 cm. A 30° correction was achieved for the lumbar lordosis due to the PSO at the L4 vertebra. The patient ODI was reduced to 20 points at the 6-months FU. Conclusions: The printed physical model was considered advantageous by the surgical team in the pre-surgical phase and during the surgery as well. The model was able to simplify the geometrical problems and potentially improve the outcome of the surgery by preventing complications and reducing surgical time.

9.
J Orthop Translat ; 28: 131-139, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33898249

RESUMEN

PURPOSE: Percutaneous cement discoplasty (PCD) is a minimally invasive surgical option to treat patients who suffer from the consequences of advanced disc degeneration. As the current two-dimensional methods can inappropriately measure the difference in the complex 3D anatomy of the spinal segment, our aim was to develop and apply a volumetric method to measure the geometrical change in the surgically treated segments. METHODS: Prospective clinical and radiological data of 10 patients who underwent single- or multilevel PCD was collected. Pre- and postoperative CT scan-based 3D reconstructions were performed. The injected PMMA (Polymethylmethacrylate) induced lifting of the cranial vertebra and the following volumetric change was measured by subtraction of the geometry of the spinal canal from a pre- and postoperatively predefined cylinder. The associations of the PMMA geometry and the volumetric change of the spinal canal with clinical outcome were determined. RESULTS: Change in the spinal canal volume (ΔV) due to the surgery proved to be significant (mean ΔV = 2266.5 ±â€¯1172.2 mm3, n = 16; p = 0.0004). A significant, positive correlation was found between ΔV, the volume and the surface of the injected PMMA. A strong, significant association between pain intensity (low back and leg pain) and the magnitude of the volumetric increase of the spinal canal was shown (ρ = 0.772, p = 0.009 for LBP and ρ = 0.693, p = 0.026 for LP). CONCLUSION: The developed method is accurate, reproducible and applicable for the analysis of any other spinal surgical method. The volume and surface area of the injected PMMA have a predictive power on the extent of the indirect spinal canal decompression. The larger the ΔV the higher clinical benefit was achieved with the PCD procedure. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The developed method has the potential to be integrated into clinical software's to evaluate the efficacy of different surgical procedures based on indirect decompression effect such as PCD, anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF), oblique lumbar interbody fusion (OLIF), extreme lateral interbody fusion (XLIF). The intraoperative use of the method will allow the surgeon to respond if the decompression does not reach the desired level.

10.
Front Surg ; 8: 698179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071306

RESUMEN

Introduction: En-bloc resection of a primary malignant sacral tumor with wide oncological margins impacts the biomechanics of the spinopelvic complex, deteriorating postoperative function. The closed-loop technique (CLT) for spinopelvic fixation (SPF) uses a single U-shaped rod to restore the spinopelvic biomechanical integrity. The CLT method was designed to provide a non-rigid fixation, however this hypothesis has not been previously tested. Here, we establish a computational method to measure the deformation of the implant and characterize the bony fusion process based on the 6-year follow-up (FU) data. Materials and Methods: Post-operative CT scans were collected of a male patient who underwent total sacrectomy at the age of 42 due to a chordoma. CLT was used to reconstruct the spinopelvic junction. We defined the 3D geometry of the implant construct. Using rigid registration algorithms, a common coordinate system was created for the CLT to measure and visualize the deformation of the construct during the FU. In order to demonstrate the cyclical loading of the construct, the patient underwent gait analysis at the 6th year FU. First, a region of interest (ROI) was selected at the proximal level of the construct, then the deformation was determined during the follow-up period. In order to investigate the fusion process, a single axial slice-based voxel finite element (FE) mesh was created. The Hounsfield values (HU) were determined, then using an empirical linear equation, bone mineral density (BMD) values were assigned for every mesh element, out of 10 color-coded categories (1st category = 0 g/cm3, 10th category 1.12 g/cm3). Results: Significant correlation was found between the number of days postoperatively and deformation in the sagittal plane, resulting in a forward bending tendency of the construct. Volume distributions were determined and visualized over time for the different BMD categories and it was found that the total volume of the elements in the highest BMD category in the first postoperative CT was 0.04 cm3, at the 2nd year, FU was 0.98 cm3, and after 6 years, it was 2.30 cm3. Conclusion: The CLT provides a non-rigid fixation. The quantification of implant deformation and bony fusion may help understate the complex lumbopelvic biomechanics after sacrectomy.

11.
J Clin Neurosci ; 72: 438-446, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31911105

RESUMEN

OBJECTIVE: The aim of the study is to develop a workflow to establish geometrical quality criteria for 3D printed anatomical models as a guidance for selecting the most suitable 3D printing technologies available in a clinical environment. METHODS: We defined the 3D geometry of a 25-year-old male patient's L4 vertebra and the geometry was then printed using two technologies, which differ in printing resolution and affordability: Fused Deposition Modelling (FDM) and Digital Light Processing (DLP). In order to measure geometrical accuracy, the 3D scans of two physical models were compared to the virtual input model. To compare surface qualities of these printing technologies we determined surface roughness for two regions of interest. Finally, we present our experience in the clinical application of a physical model in a congenital deformity case. RESULTS: The analysis of the distribution of the modified Hausdorff distance values along the vertebral surface meshes (99% of values <1 mm) of the 3D printed models provides evidence for high printing accuracy in both printing techniques. Our results demonstrate that the surface qualities, measured by roughness are adequate (~99% of values <0.1 mm) for both physical models. Finally, we implemented the FDM physical model for surgical planning. CONCLUSION: We present a workflow capable of determining the quality of 3D printed models and the application of a high quality and affordable 3D printed spine physical model in the pre operative planning. As a result of the visual guidance provided by the physical model, we were able to define the optimal trajectory of the screw insertion during surgery.


Asunto(s)
Costos y Análisis de Costo , Vértebras Lumbares/anatomía & histología , Modelos Anatómicos , Impresión Tridimensional/instrumentación , Adulto , Humanos , Masculino , Prótesis e Implantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA