Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 20(1): 149-153, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074161

RESUMEN

RNA-based enzyme RNase P is a ribonucleoprotein complex responsible primarily for 5'-maturation of tRNAs. S. cerevisiae RNase P comprises a catalytic RNA component and nine proteins. The assembly and maturation of S. cerevisiae RNase P involves an abundant and catalytically active precursor form, which includes all components except for proteins Rpr2 and Pop3. Rpr2 and Pop3 are essential proteins, but their roles in RNase P were not clear. Here we use a step-wise in vitro assembly of yeast RNase P to show that the addition of proteins Rpr2 and Pop3 increases the activity and thermal stability of the RNase P complex, similar to the effects previously observed for archaeal RNases P.


Asunto(s)
ARN Catalítico , Proteínas de Saccharomyces cerevisiae , Ribonucleasa P/genética , Saccharomyces cerevisiae/metabolismo , ARN/metabolismo , ARN Catalítico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Endorribonucleasas/metabolismo
2.
Nat Commun ; 11(1): 3474, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651392

RESUMEN

RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.


Asunto(s)
Microscopía por Crioelectrón , Endorribonucleasas/ultraestructura , Ribonucleoproteínas/ultraestructura , Carbono/química , Catálisis , Dominio Catalítico , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/química , Saccharomyces cerevisiae/enzimología
3.
Nucleic Acids Res ; 46(13): 6857-6868, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29722866

RESUMEN

RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.


Asunto(s)
Ribonucleasa P/química , Ribonucleasa P/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Huella de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
RNA ; 21(9): 1591-605, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26135751

RESUMEN

Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.


Asunto(s)
Huella de Proteína/métodos , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/química , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 41(14): 7084-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23700311

RESUMEN

Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.


Asunto(s)
Endorribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Endorribonucleasas/química , Endorribonucleasas/clasificación , Holoenzimas/metabolismo , Modelos Moleculares , Ribonucleoproteínas/química , Saccharomyces cerevisiae/enzimología
6.
Mol Microbiol ; 87(4): 851-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23305111

RESUMEN

Csr is a conserved global regulatory system that controls expression of several hundred Escherichia coli genes. CsrA protein represses translation of numerous genes by binding to mRNA and inhibiting ribosome access. CsrA also activates gene expression, although an activation mechanism has not been reported. CsrA activates flhDC expression, encoding the master regulator of flagellum biosynthesis and chemotaxis, by stabilizing the mRNA. Computer modelling, gel mobility shift and footprint analyses identified two CsrA binding sites extending from positions 1-12 (BS1) and 44-55 (BS2) of the 198 nt flhDC leader transcript. flhD'-'lacZ expression was reduced by mutations in csrA and/or the CsrA binding sites. The position of BS1 suggested that bound CsrA might inhibit 5' end-dependent RNase E cleavage of flhDC mRNA. Consistent with this hypothesis, CsrA protected flhDC leader RNA from RNase E cleavage in vitro and protection depended on BS1 and BS2. Primer extension studies identified flhDC decay intermediates in vivo that correspond to in vitro RNase E cleavage sites. Deletion of these RNase E cleavage sites resulted in increased flhD'-'lacZ expression. Data from mRNA decay studies and quantitative primer extension assays support a model in which bound CsrA activates flhDC expression by inhibiting the 5' end-dependent RNase E cleavage pathway.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/genética , Regiones no Traducidas 5' , Secuencia de Bases , Sitios de Unión , Endorribonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Datos de Secuencia Molecular , Operón , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transactivadores/química , Transactivadores/metabolismo
7.
RNA ; 18(4): 720-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22332141

RESUMEN

Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.


Asunto(s)
Endorribonucleasas/metabolismo , ARN/metabolismo , Ribonucleasa P/metabolismo , Saccharomyces cerevisiae/enzimología , Rayos Ultravioleta , Endorribonucleasas/química , Ribonucleasa P/química
8.
RNA ; 17(10): 1922-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21878546

RESUMEN

Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.


Asunto(s)
Proteínas Portadoras/metabolismo , Dominio Catalítico , Endorribonucleasas/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/química , Endorribonucleasas/química , Holoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
9.
J Bacteriol ; 193(22): 6162-70, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21908661

RESUMEN

The RNA binding protein CsrA is the central component of a conserved global regulatory system that activates or represses gene expression posttranscriptionally. In every known example of CsrA-mediated translational control, CsrA binds to the 5' untranslated region of target transcripts, thereby repressing translation initiation and/or altering the stability of the RNA. Furthermore, with few exceptions, repression by CsrA involves binding directly to the Shine-Dalgarno sequence and blocking ribosome binding. sdiA encodes the quorum-sensing receptor for N-acyl-l-homoserine lactone in Escherichia coli. Because sdiA indirectly stimulates transcription of csrB, which encodes a small RNA (sRNA) antagonist of CsrA, we further explored the relationship between sdiA and the Csr system. Primer extension analysis revealed four putative transcription start sites within 85 nucleotides of the sdiA initiation codon. Potential σ(70)-dependent promoters were identified for each of these primer extension products. In addition, two CsrA binding sites were predicted in the initially translated region of sdiA. Expression of chromosomally integrated sdiA'-'lacZ translational fusions containing the entire promoter and CsrA binding site regions indicates that CsrA represses sdiA expression. The results from gel shift and footprint studies demonstrate that tight binding of CsrA requires both of these sites. Furthermore, the results from toeprint and in vitro translation experiments indicate that CsrA represses translation of sdiA by directly competing with 30S ribosomal subunit binding. Thus, this represents the first example of CsrA preventing translation by interacting solely within the coding region of an mRNA target.


Asunto(s)
Regulación hacia Abajo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/genética , Secuencia de Bases , Escherichia coli/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Transactivadores/metabolismo
10.
Mol Microbiol ; 81(3): 689-704, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696456

RESUMEN

CsrA of Escherichia coli is an RNA-binding protein that globally regulates gene expression by repressing translation and/or altering the stability of target transcripts. Here we explored mechanisms that control csrA expression. Four CsrA binding sites were predicted upstream of the csrA initiation codon, one of which overlapped its Shine-Dalgarno sequence. Results from gel shift, footprint, toeprint and in vitro translation experiments indicate that CsrA binds to these four sites and represses its own translation by directly competing with 30S ribosomal subunit binding. Experiments were also performed to examine transcription of csrA. Primer extension, in vitro transcription and in vivo expression studies identified two σ7°-dependent (P2 and P5) and two σ(S) -dependent (P1 and P3) promoters that drive transcription of csrA. Additional primer extension studies identified a fifth csrA promoter (P4). Transcription from P3, which is indirectly activated by CsrA, is primarily responsible for increased csrA expression as cells transition from exponential to stationary-phase growth. Taken together, our results indicate that regulation of csrA expression occurs by a variety of mechanisms, including transcription from multiple promoters by two sigma factors, indirect activation of its own transcription, as well as direct repression of its own translation.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/biosíntesis , Proteínas Represoras/biosíntesis , Factor sigma/metabolismo , Activación Transcripcional , Secuencia de Bases , Sitios de Unión , Huella de ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Modelos Biológicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Sitio de Iniciación de la Transcripción
11.
RNA ; 17(2): 356-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21173200

RESUMEN

The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.


Asunto(s)
Endorribonucleasas/química , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Sitios de Unión , Endorribonucleasas/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , ARN/química , ARN/metabolismo , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
12.
Vaccine ; 25(15): 2900-6, 2007 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-17005302

RESUMEN

We used monoclonal antibody, generated against N-acetylglucosaminyl-beta1-4-N-acetylmuramyl-alanyl-D-isoglutamine (GMDP), and phage display libraries of random peptides to select for oligopeptides, that mimic GMDP in their biological activity. Selected phage clones displayed a peptide RVPPRYHAKISPMVN (called RN-peptide) on their surface. This peptide was synthesized. RN-peptide was shown to augment the antibody response to ovalbumin in mice while the peptide was non-immunogenic and non-pyrogenic. We also characterized adjuvant activity of 14-, 10- and 7-mer analogs of RN-peptide truncated at the C-terminus and found them to be active. Because both carbohydrate and peptide fragments are critical for the biological activity of muramyl peptides, the results indicate that RN-peptide mimicks the spatial structure of intact GMDP.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina/análogos & derivados , Anticuerpos Monoclonales/inmunología , Oligopéptidos/inmunología , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/inmunología , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Secuencia de Aminoácidos , Animales , Epítopos/inmunología , Femenino , Antígenos de Histocompatibilidad Clase II/biosíntesis , Antígenos de Histocompatibilidad Clase II/inmunología , Ratones , Ratones Endogámicos BALB C , Imitación Molecular , Datos de Secuencia Molecular , Oligopéptidos/química , Biblioteca de Péptidos , Pirógenos/inmunología , Ratas , Ratas Wistar
13.
Artículo en Inglés | MEDLINE | ID: mdl-16511259

RESUMEN

The Escherichia coli gene encoding the transcription cleavage factor GreB and the Thermus thermophilus gene encoding the anti-GreA transcription factor Gfh1 were cloned and expressed and the purified proteins were crystallized by the sitting-drop vapor-diffusion technique. The GreB and Gfh1 crystals, which were improved by macroseeding, belong to space group P4(1)2(1)2 (or P4(3)2(1)2), with unit-cell parameters a = b = 148, c = 115.2 A and a = b = 59.3, c = 218.9 A, respectively. Complete diffraction data sets were collected for the GreB and Gfh1 crystals to 2.6 and 2.8 A resolution, respectively. Crystals of the selenomethionine proteins were obtained by microseeding using the native protein crystals and diffract as well as the native ones. The structure determination of these proteins is now in progress.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Thermus thermophilus/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Thermus thermophilus/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Elongación Transcripcional/biosíntesis , Factores de Elongación Transcripcional/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA