Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
EMBO Rep ; 18(5): 712-725, 2017 05.
Article En | MEDLINE | ID: mdl-28341812

Wnt/ß-catenin signaling plays a key role in embryonic development, stem cell biology, and neurogenesis. However, the mechanisms of Wnt signal transmission, notably how the receptors are regulated, remain incompletely understood. Here we describe that the Parkinson's disease-associated receptor GPR37 functions in the maturation of the N-terminal bulky ß-propellers of the Wnt co-receptor LRP6. GPR37 is required for Wnt/ß-catenin signaling and protects LRP6 from ER-associated degradation via CHIP (carboxyl terminus of Hsc70-interacting protein) and the ATPase VCP GPR37 is highly expressed in neural progenitor cells (NPCs) where it is required for Wnt-dependent neurogenesis. We conclude that GPR37 is crucial for cellular protein quality control during Wnt signaling.


Endoplasmic Reticulum/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Molecular Chaperones/metabolism , Parkinson Disease/metabolism , Receptors, G-Protein-Coupled/metabolism , Wnt Signaling Pathway , Animals , Endoplasmic Reticulum-Associated Degradation , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Neural Stem Cells/metabolism , Phosphorylation , Proteolysis , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Wnt Proteins/genetics , Wnt Proteins/metabolism
2.
Haematologica ; 100(5): 601-10, 2015 May.
Article En | MEDLINE | ID: mdl-25682599

Heme oxygenase-1 is critical for iron recycling during red blood cell turnover, whereas its impact on steady-state erythropoiesis and red blood cell lifespan is not known. We show here that in 8- to 14-week old mice, heme oxygenase-1 deficiency adversely affects steady-state erythropoiesis in the bone marrow. This is manifested by a decrease in Ter-119(+)-erythroid cells, abnormal adhesion molecule expression on macrophages and erythroid cells, and a greatly diminished ability to form erythroblastic islands. Compared with wild-type animals, red blood cell size and hemoglobin content are decreased, while the number of circulating red blood cells is increased in heme oxygenase-1 deficient mice, overall leading to microcytic anemia. Heme oxygenase-1 deficiency increases oxidative stress in circulating red blood cells and greatly decreases the frequency of macrophages expressing the phosphatidylserine receptor Tim4 in bone marrow, spleen and liver. Heme oxygenase-1 deficiency increases spleen weight and Ter119(+)-erythroid cells in the spleen, although α4ß1-integrin expression by these cells and splenic macrophages positive for vascular cell adhesion molecule 1 are both decreased. Red blood cell lifespan is prolonged in heme oxygenase-1 deficient mice compared with wild-type mice. Our findings suggest that while macrophages and relevant receptors required for red blood cell formation and removal are substantially depleted in heme oxygenase-1 deficient mice, the extent of anemia in these mice may be ameliorated by the prolonged lifespan of their oxidatively stressed erythrocytes.


Anemia, Hemolytic , Erythroblasts/metabolism , Erythrocytes/metabolism , Erythropoiesis/genetics , Growth Disorders , Heme Oxygenase-1/deficiency , Iron Metabolism Disorders , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Communication/genetics , Cell Differentiation/genetics , Cell Survival/genetics , Erythroblasts/cytology , Erythrocyte Indices , Erythrocytes/cytology , Immunophenotyping , Liver/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , Oxidative Stress , Spleen/cytology
3.
Mol Cell ; 54(4): 663-74, 2014 May 22.
Article En | MEDLINE | ID: mdl-24837680

Canonical Wnt signaling is thought to regulate cell behavior mainly by inducing ß-catenin-dependent transcription of target genes. In proliferating cells Wnt signaling peaks in the G2/M phase of the cell cycle, but the significance of this "mitotic Wnt signaling" is unclear. Here we introduce Wnt-dependent stabilization of proteins (Wnt/STOP), which is independent of ß-catenin and peaks during mitosis. We show that Wnt/STOP plays a critical role in protecting proteins, including c-MYC, from GSK3-dependent polyubiquitination and degradation. Wnt/STOP signaling increases cellular protein levels and cell size. Wnt/STOP, rather than ß-catenin signaling, is the dominant mode of Wnt signaling in several cancer cell lines, where it is required for cell growth. We propose that Wnt/STOP signaling slows down protein degradation as cells prepare to divide.


Cell Size , Mitosis , Wnt Proteins/metabolism , Wnt Signaling Pathway , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , HeLa Cells , Humans , Protein Array Analysis , Protein Stability , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Ubiquitination , Wnt Proteins/genetics
4.
Adv Hematol ; 2011: 473709, 2011.
Article En | MEDLINE | ID: mdl-22162689

The first mature cells to arise in the developing mammalian embryo belong to the erythroid lineage. This highlights the immediacy of the need for red blood cells during embryogenesis and for survival. Linked with this pressure is the necessity of the embryo to obtain and transport iron, synthesize hemoglobin, and then dispose of the potentially toxic heme via the stress-induced protein heme oxygenase-1 (HO-1, encoded by Hmox1 in the mouse). Null mutation of Hmox1 results in significant embryonic mortality as well as anemia and defective iron recycling. Here, we discuss the interrelated nature of this critical enzyme with iron trafficking, erythroid cell function, and embryonic survival.

...