Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Curr Genet ; 67(5): 755-759, 2021 Oct.
Article En | MEDLINE | ID: mdl-33948708

With the current COVID-19 pandemic, we all realized how important interactions are. Interactions are everywhere. At the cellular level, protein interactions play a key role and their ensemble, also called interactome, is often referred as the basic building blocks of life. Given its importance, the maintenance of the integrity of the interactome is a real challenge in the cell. Many events during evolution can disrupt interactomes and potentially result in different characteristics for the organisms. However, the molecular underpinnings of changes in interactions at the cellular level are still largely unexplored. Among the perturbations, hybridization puts in contact two different interactomes, which may lead to many changes in the protein interaction network of the hybrid, including gains and losses of interactions. We recently investigated the fate of the interactomes after hybridization between yeast species using a comparative proteomics approach. A large-scale conservation of the interactions was observed in hybrids, but we also noticed the presence of proteostasis-related changes. This suggests that, despite a general robustness, small differences may accumulate in hybrids and perturb their protein physiology. Here, we summarize our work with a broader perspective on the importance of interactions.


Fungal Proteins/metabolism , Hybridization, Genetic , Protein Interaction Maps , Saccharomyces cerevisiae/metabolism , Saccharomyces/metabolism , Animals , Fungal Proteins/chemistry , Fungal Proteins/genetics , Proteomics , Saccharomyces/chemistry , Saccharomyces/classification , Saccharomyces/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics
2.
Mol Biol Evol ; 38(4): 1384-1401, 2021 04 13.
Article En | MEDLINE | ID: mdl-33252673

Hybrids between species often show extreme phenotypes, including some that take place at the molecular level. In this study, we investigated the phenotypes of an interspecies diploid hybrid in terms of protein-protein interactions inferred from protein correlation profiling. We used two yeast species, Saccharomyces cerevisiae and Saccharomyces uvarum, which are interfertile, but yet have proteins diverged enough to be differentiated using mass spectrometry. Most of the protein-protein interactions are similar between hybrid and parents, and are consistent with the assembly of chimeric complexes, which we validated using an orthogonal approach for the prefoldin complex. We also identified instances of altered protein-protein interactions in the hybrid, for instance, in complexes related to proteostasis and in mitochondrial protein complexes. Overall, this study uncovers the likely frequent occurrence of chimeric protein complexes with few exceptions, which may result from incompatibilities or imbalances between the parental proteomes.


Hybridization, Genetic , Protein Interaction Maps , Saccharomyces cerevisiae/metabolism , Proteomics , Saccharomyces cerevisiae/genetics
3.
Science ; 355(6325): 630-634, 2017 02 10.
Article En | MEDLINE | ID: mdl-28183979

The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other's presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other's abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.


Gene Duplication , Genes, Duplicate , Protein Interaction Maps/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Evolution, Molecular
4.
PLoS One ; 12(1): e0170160, 2017.
Article En | MEDLINE | ID: mdl-28103300

Acute myeloid leukemia (AML) is a heterogeneous disease. Prognosis is mainly influenced by patient age at diagnosis and cytogenetic alterations, two of the main factors currently used in AML patient risk stratification. However, additional criteria are required to improve the current risk classification and better adapt patient care. In neoplastic cells, ribosome biogenesis is increased to sustain the high proliferation rate and ribosome composition is altered to modulate specific gene expression driving tumorigenesis. Here, we investigated the usage of ribosome biogenesis factors as clinical markers in adult patients with AML. We showed that nucleoli, the nucleus compartments where ribosome production takes place, are modified in AML by analyzing a panel of AML and healthy donor cells using immunofluorescence staining. Using four AML series, including the TCGA dataset, altogether representing a total of about 270 samples, we showed that not all factors involved in ribosome biogenesis have clinical values although ribosome biogenesis is increased in AML. Interestingly, we identified the regulator of ribosome production nucleolin (NCL) as over-expressed in AML blasts. Moreover, we found in two series that high NCL mRNA expression level was associated with a poor overall survival, particular in elderly patients. Multivariate analyses taking into account age and cytogenetic risk indicated that NCL expression in blast cells is an independent marker of reduced survival. Our study identifies NCL as a potential novel prognostic factor in AML. Altogether, our results suggest that the ribosome biogenesis pathway may be of interest as clinical markers in AML.


Biomarkers, Tumor/genetics , Leukemia, Myeloid, Acute/genetics , Phosphoproteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Leukemia, Myeloid, Acute/metabolism , Male , Middle Aged , Nuclear Proteins/genetics , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Up-Regulation , Young Adult , Nucleolin
5.
Brief Funct Genomics ; 15(2): 130-7, 2016 Mar.
Article En | MEDLINE | ID: mdl-26476431

Cellular architectures and signaling machineries are organized through protein-protein interactions (PPIs). High-throughput methods to study PPIs in yeast have opened a new perspective on the organization of the cell by allowing the study of whole protein interactomes. Recent investigations have moved from the description of this organization to the analysis of its dynamics by experimenting how protein interaction networks (PINs) are rewired in response to perturbations. Here we review studies that have used the budding yeast as an experimental system to explore these altered networks. Given the large space of possible PPIs and the diversity of potential genetic and environmental perturbations, high-throughput methods are an essential requirement to survey PIN perturbations on a large scale. Network perturbations are typically conceptualized as the removal of entire proteins (nodes), the modification of single PPIs (edges) or changes in growth conditions. These studies have revealed mechanisms of PPI regulation, PIN architectural organization, robustness and sensitivity to perturbations. Despite these major advances, there are still inherent limits to current technologies that lead to a trade-off between the number of perturbations and the number of PPIs that can be considered simultaneously. Nevertheless, as we exemplify here, targeted approaches combined with the existing resources remain extremely powerful to explore the inner organization of cells and their responses to perturbations.


Genotype , Phenotype , Protein Interaction Mapping , Alleles , Evolution, Molecular , Gene Deletion , Protein Interaction Mapping/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological
...