Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS One ; 19(8): e0308580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133705

RESUMEN

INTRODUCTION: Assessment of left ventricular ejection fraction (LVEF) is one of the primary objectives of echocardiography. The gold standard assessment technique in emergency medicine is eyeballing. A new tool is now available on pocket ultrasound devices (PUD): automatic LVEF. The primary aim of this study was to evaluate the concordance between LVEF values estimated by automatic LVEF with PUD and by cardiac magnetic resonance imaging (MRI). MATERIALS: This was a prospective, monocentric, and observational study. All adult patients with an indication for cardiac MRI underwent a point-of-care ultrasound. Blinded to the MRI results, the emergency physician assessed LVEF using the automatic PUD tool and by visual evaluation. RESULTS: Sixty patients were included and analyzed. Visual estimation of LVEF was feasible for all patients and automatic evaluation for 52 (87%) patients. Lin's concordance correlation coefficient between automatic ejection fraction with PUD and by cardiac MRI was 0.23 (95% CI, 0.03-0.40). CONCLUSION: Concordance between LVEF estimated by the automatic ejection fraction with PUD and LVEF estimated by MRI was non-existent.


Asunto(s)
Imagen por Resonancia Magnética , Volumen Sistólico , Función Ventricular Izquierda , Humanos , Masculino , Femenino , Persona de Mediana Edad , Volumen Sistólico/fisiología , Imagen por Resonancia Magnética/métodos , Anciano , Estudios Prospectivos , Función Ventricular Izquierda/fisiología , Ecocardiografía/métodos , Ecocardiografía/instrumentación , Sistemas de Atención de Punto , Adulto
2.
Phys Imaging Radiat Oncol ; 21: 108-114, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35243041

RESUMEN

BACKGROUND AND PURPOSE: Image-guided radiotherapy (IGRT) involves frequent in-room imaging sessions contributing to additional patient irradiation. The present work provided patient-specific dosimetric data related to different imaging protocols and anatomical sites. MATERIAL AND METHODS: We developed a Monte Carlo based software able to calculate 3D personalized dose distributions for five imaging devices delivering kV-CBCT (Elekta and Varian linacs), MV-CT (Tomotherapy machines) and 2D-kV stereoscopic images from BrainLab and Accuray. Our study reported the dose distributions calculated for pelvis, head and neck and breast cases based on dose volume histograms for several organs at risk. RESULTS: 2D-kV imaging provided the minimum dose with less than 1 mGy per image pair. For a single kV-CBCT and MV-CT, median dose to organs were respectively around 30 mGy and 15 mGy for the pelvis, around 7 mGy and 10 mGy for the head and neck and around 5 mGy and 15 mGy for the breast. While MV-CT dose varied sparsely with tissues, dose from kV imaging was around 1.7 times higher in bones than in soft tissue. Daily kV-CBCT along 40 sessions of prostate radiotherapy delivered up to 3.5 Gy to the femoral heads. The dose level for head and neck and breast appeared to be lower than 0.4 Gy for every organ in case of a daily imaging session. CONCLUSIONS: This study showed the dosimetric impact of IGRT procedures. Acquisition parameters should therefore be chosen wisely depending on the clinical purposes and tailored to morphology. Indeed, imaging dose could be reduced up to a factor 10 with optimized protocols.

3.
Radiat Oncol ; 11: 58, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27090091

RESUMEN

BACKGROUND: Benign tumors of the skull base are a challenge when delivering radiotherapy. An appropriate choice of radiation technique may significantly improve the patient's outcomes. Our study aimed to compare the dosimetric results of fractionated stereotactic radiotherapy between non-coplanar dynamic arcs and coplanar volumetric modulated arctherapy (Rapidarc®). METHODS: Thirteen patients treated with Novalis TX® were analysed: six vestibular schwannomas, four pituitary adenomas and three meningioma. Two treatment plans were created for each case: dynamic arcs (4-5 non coplanar arcs) and Rapidarc® (2 coplanar arcs). All tumors were >3 cm and accessible to both techniques. Patients had a stereotactic facemask (Brainlab) and were daily repositioned by Exactrac®. GTV and CTV were contoured according to tumor type. A 1-mm margin was added to the CTV to obtain PTV. Radiation doses were 52.2-54 Gy, using 1.8 Gy per fraction. Treatment time was faster with Rapidarc®. RESULTS: The mean PTV V95 % was 98.8 for Rapidarc® and 95.9 % for DA (p = 0.09). Homogeneity index was better with Rapidarc®: 0.06 vs. 0.09 (p = 0.01). Higher conformity index values were obtained with Rapidarc®: 75.2 vs. 67.9 % (p = 0.04). The volume of healthy brain that received a high dose (V90 %) was 0.7 % using Rapidarc® vs. 1.4 % with dynamic arcs (p = 0.05). Rapidarc® and dynamic arcs gave, respectively, a mean D40 % of 10.5 vs. 18.1 Gy (p = 0.005) for the hippocampus and a Dmean of 25.4 vs. 35.3 Gy (p = 0.008) for the ipsilateral cochlea. Low-dose delivery with Rapidarc® and dynamic arcs were, respectively, 184 vs. 166 cm(3) for V20 Gy (p = 0.14) and 1265 vs. 1056 cm(3) for V5 Gy (p = 0.67). CONCLUSIONS: Fractionated stereotactic radiotherapy using Rapidarc® for large benign tumors of the skull base provided target volume coverage that was at least equal to that of dynamics arcs, with better conformity and homogeneity and faster treatment time. Rapidarc® also offered better sparing of the ipsilateral cochlea and hippocampus. Low-dose delivery were similar between both techniques.


Asunto(s)
Radiometría/métodos , Radiocirugia/efectos adversos , Radiocirugia/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Neoplasias Craneales/radioterapia , Encéfalo/efectos de la radiación , Cóclea/efectos de la radiación , Hipocampo/efectos de la radiación , Humanos , Órganos en Riesgo , Radiocirugia/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Radioterapia de Intensidad Modulada/métodos , Reproducibilidad de los Resultados , Resultado del Tratamiento
4.
Phys Med ; 27(1): 1-10, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20615735

RESUMEN

PURPOSE: In vivo dose verification is used to prevent major deviations between the prescribed dose and the dose really delivered to the patient. This work presents a quick and simple alternative method for verification of dose delivered to the patient using photon beams. During the treatment session, a transit dose is measured with the EPID and the dose in the patient is estimated from back projection of the portal dose. METHODS AND MATERIALS: The formalism for dose calculation is described. It is independent of the detector and has been validated for different beam energies using an ionization chamber (IC). Central axis doses estimated by this formalism were compared with measured dose. Subsequently, the IC was replaced by the EPID appropriately calibrated. The feasibility of the method and its applicability in clinical use has been evaluated on 3 8 patients treated with conformal therapy for various localizations. RESULTS: Ratios between stated and measured doses are reported. They are within the accepted tolerance of classical in vivo dosimetry (SD of 3.5%). CONCLUSIONS: The proposed method for in vivo dose verification is very simple to implement and to use in clinics. Measurements can be repeated during several sessions giving the opportunity to built new strategies for the validation by statistical evaluation of the data. The trending of in vivo dose along the treatment becomes also possible. The number of checkable beams is also increased by this method.


Asunto(s)
Tolerancia a Radiación , Radioterapia/métodos , Algoritmos , Calibración , Humanos , Fotones , Radiometría , Radioterapia/instrumentación , Radioterapia/normas , Radioterapia/tendencias , Dosificación Radioterapéutica
5.
J Appl Clin Med Phys ; 7(1): 105-14, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16518322

RESUMEN

Today, electronic portal imaging devices (EPIDs) are widely used as a replacement to portal films for patient position verification, but the image quality is not always optimal. The general aim of this study was to optimize the acquisition parameters of an amorphous silicon EPID commercially available for clinical use in radiation therapy with the view to avoid saturation of the system. Special attention was paid to selection of the parameter corresponding to the number of rows acquired between accelerator pulses (NRP) for various beam energies and dose rates. The image acquisition system (IAS2) has been studied, and portal image acquisition was found to be strongly dependent on the accelerator pulse frequency. This frequency is set for each "energy - dose rate" combination of the linear accelerator. For all combinations, the image acquisition parameters were systematically changed to determine their influence on the performances of the Varian aS500 EPID system. New parameters such as the maximum number of rows (MNR) and the number of pulses per frame (NPF) were introduced to explain portal image acquisition theory. Theoretical and experimental values of MNR and NPF were compared, and they were in good agreement. Other results showed that NRP had a major influence on detector saturation and dose per image. A rule of thumb was established to determine the optimum NRP value to be used. This practical application was illustrated by a clinical example in which the saturation of the aSi EPID was avoided by NRP optimization. Moreover, an additional study showed that image quality was relatively insensitive to this parameter.


Asunto(s)
Intensificación de Imagen Radiográfica/instrumentación , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/instrumentación , Radioterapia Conformacional/instrumentación , Algoritmos , Diseño de Equipo , Análisis de Falla de Equipo , Control de Calidad , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA