Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ophthalmic Vis Res ; 18(1): 60-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937198

RESUMEN

Purpose: Mutations in TCP-1 ring complex (TRiC) have been associated with Leber Congenital Amaurosis (LCA). TRiC is involved in protein folding and has 8 essential subunits including CCT5. Herein, we studied the retina of TRiC mutant zebrafish to evaluate the possible role of impaired actin and tubulin folding in LCA. Methods: The cct5 t f 212 b retina was histologically studied using Toluidine Blue staining as well as TUNEL, BrdU-labeling, and Phalloidin assays. Retinal organisation was assessed by quantification of the cellularity utilising DAPI. Results: Laminar organization of cct5 t f 212 b retinas was intact. Enhanced apoptosis throughout the cct5 t f 212 b retina was not compensated by higher proliferation rates, leaving the cct5 t f 212 b retina smaller in size. Quantification of retinal layer cellularity demonstrated that specifically the numbers of the amacrine and the retinal ganglion cells were depleted, suggesting that the cct5 t f 212 b retina was not uniformly affected by the reduced actin folding. Conclusion: Whereas the current literature suggests that LCA is predominantly affecting retinal photoreceptor cells and the retinal pigment epithelium, cct5 t f 212 b analyses demonstrated the important role of folding of actin by TRiC, suggesting that cct5 t f 212 b is a useful tool to specifically analyze the role of F-actin filaments in the context of LCA.

2.
PLoS Genet ; 18(6): e1010287, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737712

RESUMEN

Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4. In Drosophila, mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.


Asunto(s)
Miofibrillas , Pez Cebra , Actinas/genética , Actinas/metabolismo , Animales , Chaperoninas/metabolismo , Microtúbulos/genética , Miofibrillas/metabolismo , Sarcómeros/metabolismo , Pez Cebra/genética
3.
PLoS Genet ; 18(2): e1010066, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35148320

RESUMEN

Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.


Asunto(s)
Proteína CapZ/metabolismo , Enfermedades Musculares , Miofibrillas , Actinas/genética , Actinas/metabolismo , Animales , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Miofibrillas/genética , Miofibrillas/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Nature ; 591(7849): 281-287, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33568815

RESUMEN

Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.


Asunto(s)
Macrófagos/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Mioblastos/citología , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicho de Células Madre , Pez Cebra/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Macrófagos/citología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Factor de Transcripción PAX7/metabolismo , RNA-Seq , Receptores CCR5/genética , Receptores CCR5/metabolismo , Regeneración/fisiología , Análisis de la Célula Individual , Pez Cebra/inmunología
5.
J Cell Mol Med ; 24(12): 6680-6689, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32343037

RESUMEN

Duchenne muscular dystrophy is a severe muscle wasting disease caused by mutations in the dystrophin gene (dmd). Ataluren has been approved by the European Medicines Agency for treatment of Duchenne muscular dystrophy. Ataluren has been reported to promote ribosomal read-through of premature stop codons, leading to restoration of full-length dystrophin protein. However, the mechanism of Ataluren action has not been fully described. To evaluate the efficacy of Ataluren on all three premature stop codons featuring different termination strengths (UAA > UAG > UGA), novel dystrophin-deficient zebrafish were generated. Pathological assessment of the muscle by birefringence quantification, a tool to directly measure muscle integrity, did not reveal a significant effect of Ataluren on any of the analysed dystrophin-deficient mutants at 3 days after fertilization. Functional analysis of the musculature at 6 days after fertilization by direct measurement of the generated force revealed a significant improvement by Ataluren only for the UAA-carrying mutant dmdta222a . Interestingly however, all other analysed dystrophin-deficient mutants were not affected by Ataluren, including the dmdpc3 and dmdpc2 mutants that harbour weaker premature stop codons UAG and UGA, respectively. These in vivo results contradict reported in vitro data on Ataluren efficacy, suggesting that Ataluren might not promote read-through of premature stop codons. In addition, Ataluren had no effect on dystrophin transcript levels, but mild adverse effects on wild-type larvae were identified. Further assessment of N-terminally truncated dystrophin opened the possibility of Ataluren promoting alternative translation codons within dystrophin, thereby potentially shifting the patient cohort applicable for Ataluren.


Asunto(s)
Distrofina/genética , Mutación/genética , Oxadiazoles/farmacología , Animales , Codón sin Sentido/genética , Exones/genética , Homocigoto , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Oxadiazoles/efectos adversos , Fenotipo , Isoformas de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra/genética
6.
Cell Rep ; 22(2): 313-322, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29320728

RESUMEN

The TCP-1 ring complex (TRiC) is a multi-subunit group II chaperonin that assists nascent or misfolded proteins to attain their native conformation in an ATP-dependent manner. Functional studies in yeast have suggested that TRiC is an essential and generalized component of the protein-folding machinery of eukaryotic cells. However, TRiC's involvement in specific cellular processes within multicellular organisms is largely unknown because little validation of TRiC function exists in animals. Our in vivo analysis reveals a surprisingly specific role of TRiC in the biogenesis of skeletal muscle α-actin during sarcomere assembly in myofibers. TRiC acts at the sarcomere's Z-disk, where it is required for efficient assembly of actin thin filaments. Binding of ATP specifically by the TRiC subunit Cct5 is required for efficient actin folding in vivo. Furthermore, mutant α-actin isoforms that result in nemaline myopathy in patients obtain their pathogenic conformation via this function of TRiC.


Asunto(s)
Actinas/metabolismo , Chaperonina con TCP-1/metabolismo , Chaperoninas/química , Sarcómeros/metabolismo , Animales , Humanos , Pez Cebra
7.
Dev Dyn ; 246(12): 1027-1035, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28791777

RESUMEN

BACKGROUND: The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. RESULTS: Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. CONCLUSIONS: Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Cardiopatías Congénitas , Katanina , Mutación , Transducción de Señal/genética , Animales , Técnicas de Sustitución del Gen , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Katanina/genética , Katanina/metabolismo , Ratones , Ratones Noqueados
8.
Hum Mol Genet ; 26(6): 1146-1156, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28104788

RESUMEN

Congenital myopathies are muscle degenerative disorders with a broad clinical spectrum. A number of myopathies have been associated with molecular defects within sarcomeres, the force-generating component of the muscle cell. Whereas the highly regular organization of the myofibril has been studied in detail, in vivo assembly of sarcomeres remains a poorly understood process. Therefore, a more detailed knowledge of sarcomere assembly is crucial to better understand the pathogenic mechanisms within myopathies. Recently, mutations in myosin XVIIIB (MYO18B) have been associated with cases of myopathies, although the underlying mechanism for the resulting pathology remains to be defined. To analyze the role of myosin XVIIIB in skeletal muscle disease, zebrafish mutants for myo18b were generated. Full loss of myo18b function results in a complete lack of sarcomeric structure, revealing a highly surprising and essential role for myo18b in sarcomere assembly. Importantly, scattered thin and thick filaments assemble throughout the sarcoplasm; but fail to organize into recognizable sarcomeric structures in myo18b null mutants. In myo18b partial loss-of-function mutants sarcomeric structures are assembled, but thin and thick filaments remain misaligned within these structures. These observations suggest a novel model of sarcomere assembly where Myo18b coordinates the integration of preformed thick and thin filaments into the sarcomere. Disruption of this highly coordinated process results in a block in sarcomere biogenesis and the onset of myopathic pathology.


Asunto(s)
Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/genética , Miosinas/genética , Sarcómeros/genética , Proteínas Supresoras de Tumor/genética , Pez Cebra/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Humanos , Músculo Esquelético/patología , Proteínas Mutantes/genética , Miopatías Estructurales Congénitas/patología , Miosinas/biosíntesis , Sarcómeros/metabolismo , Sarcómeros/patología , Proteínas Supresoras de Tumor/biosíntesis , Pez Cebra/fisiología
9.
Nature ; 535(7613): 542-6, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27437584

RESUMEN

The transition from fins to limbs was an important terrestrial adaptation, but how this crucial evolutionary shift arose developmentally is unknown. Current models focus on the distinct roles of the apical ectodermal ridge (AER) and the signaling molecules that it secretes during limb and fin outgrowth. In contrast to the limb AER, the AER of the fin rapidly transitions into the apical fold and in the process shuts off AER-derived signals that stimulate proliferation of the precursors of the appendicular skeleton. The differing fates of the AER during fish and tetrapod development have led to the speculation that fin-fold formation was one of the evolutionary hurdles to the AER-dependent expansion of the fin mesenchyme required to generate the increased appendicular structure evident within limbs. Consequently, a heterochronic shift in the AER-to-apical-fold transition has been postulated to be crucial for limb evolution. The ability to test this model has been hampered by a lack of understanding of the mechanisms controlling apical fold induction. Here we show that invasion by cells of a newly identified somite-derived lineage into the AER in zebrafish regulates apical fold induction. Ablation of these cells inhibits apical fold formation, prolongs AER activity and increases the amount of fin bud mesenchyme, suggesting that these cells could provide the timing mechanism proposed in Thorogood's clock model of the fin-to-limb transition. We further demonstrate that apical-fold inducing cells are progressively lost during gnathostome evolution;the absence of such cells within the tetrapod limb suggests that their loss may have been a necessary prelude to the attainment of limb-like structures in Devonian sarcopterygian fish.


Asunto(s)
Aletas de Animales/embriología , Aletas de Animales/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Somitos/embriología , Somitos/metabolismo , Pez Cebra/embriología , Animales , Evolución Biológica , Linaje de la Célula , Ectodermo/citología , Femenino , Esbozos de los Miembros/citología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Somitos/citología
10.
Science ; 353(6295): aad9969, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27198673

RESUMEN

Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool.


Asunto(s)
División Celular/fisiología , Rastreo Celular/métodos , Músculo Esquelético/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Animales Modificados Genéticamente , División Celular/genética , Células Clonales , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/lesiones , Mutación , Factor 5 Regulador Miogénico/genética , Miogenina/genética , Regeneración/genética , Células Satélite del Músculo Esquelético/citología , Transgenes , Pez Cebra
11.
Differentiation ; 91(1-3): 29-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26897459

RESUMEN

Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients. Here we describe a novel mouse model and subsequent implications of Nkx2-5 loss for aspects of myocardial electrical activity. In this work we have engineered a new Nkx2-5 conditional knockout mouse in which flox sites flank the entire Nkx2-5 locus, and validated this line for the study of heart development, differentiation and disease using a full deletion strategy. While our homozygous knockout mice show typical embryonic malformations previously described for the lack of the Nkx2-5 gene, hearts of heterozygous adult mice show moderate morphological and functional abnormalities that are sufficient to sustain blood supply demands under homeostatic conditions. This study further reveals intriguing aspects of Nkx2-5 function in the control of cardiac electrical activity. Using a combination of mouse genetics, biochemistry, molecular and cell biology, we demonstrate that Nkx2-5 regulates the gene encoding Kcnh2 channel and others, shedding light on potential mechanisms generating electrical abnormalities observed in patients bearing NKX2-5 dysfunction and opening opportunities to the study of novel therapeutic targets for anti-arrhythmogenic therapies.


Asunto(s)
Canal de Potasio ERG1/genética , Cardiopatías Congénitas/genética , Corazón/crecimiento & desarrollo , Proteína Homeótica Nkx-2.5/genética , Animales , Modelos Animales de Enfermedad , Canal de Potasio ERG1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Corazón/fisiopatología , Cardiopatías Congénitas/fisiopatología , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Mutación
12.
Dis Model Mech ; 7(12): 1407-15, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25288681

RESUMEN

Nemaline myopathy is an inherited muscle disease that is mainly diagnosed by the presence of nemaline rods in muscle biopsies. Of the nine genes associated with the disease, five encode components of striated muscle sarcomeres. In a genetic zebrafish screen, the mutant träge (trg) was isolated based on its reduction in muscle birefringence, indicating muscle damage. Myofibres in trg appeared disorganised and showed inhomogeneous cytoplasmic eosin staining alongside malformed nuclei. Linkage analysis of trg combined with sequencing identified a nonsense mutation in tropomodulin4 (tmod4), a regulator of thin filament length and stability. Accordingly, although actin monomers polymerize to form thin filaments in the skeletal muscle of tmod4(trg) mutants, thin filaments often appeared to be dispersed throughout myofibres. Organised myofibrils with the typical striation rarely assemble, leading to severe muscle weakness, impaired locomotion and early death. Myofibrils of tmod4(trg) mutants often featured thin filaments of various lengths, widened Z-disks, undefined H-zones and electron-dense aggregations of various shapes and sizes. Importantly, Gomori trichrome staining and the lattice pattern of the detected cytoplasmic rods, together with the reactivity of rods with phalloidin and an antibody against actinin, is reminiscent of nemaline rods found in nemaline myopathy, suggesting that misregulation of thin filament length causes cytoplasmic rod formation in tmod4(trg) mutants. Although Tropomodulin4 has not been associated with myopathy, the results presented here implicateTMOD4 as a novel candidate for unresolved nemaline myopathies and suggest that the tmod4(trg) mutant will be a valuable tool to study human muscle disorders.


Asunto(s)
Mutación , Tropomodulina/genética , Tropomodulina/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Actinina/química , Actinas/química , Alelos , Animales , Animales Modificados Genéticamente , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Ligamiento Genético , Masculino , Músculos/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Miofibrillas/metabolismo , Enfermedades Neuromusculares/metabolismo , Faloidina/química , Fenotipo , Sarcómeros/metabolismo , Pez Cebra
13.
Nature ; 512(7514): 314-8, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25119043

RESUMEN

Haematopoietic stem cells (HSCs) are self-renewing stem cells capable of replenishing all blood lineages. In all vertebrate embryos that have been studied, definitive HSCs are generated initially within the dorsal aorta (DA) of the embryonic vasculature by a series of poorly understood inductive events. Previous studies have identified that signalling relayed from adjacent somites coordinates HSC induction, but the nature of this signal has remained elusive. Here we reveal that somite specification of HSCs occurs via the deployment of a specific endothelial precursor population, which arises within a sub-compartment of the zebrafish somite that we have defined as the endotome. Endothelial cells of the endotome are specified within the nascent somite by the activity of the homeobox gene meox1. Specified endotomal cells consequently migrate and colonize the DA, where they induce HSC formation through the deployment of chemokine signalling activated in these cells during endotome formation. Loss of meox1 activity expands the endotome at the expense of a second somitic cell type, the muscle precursors of the dermomyotomal equivalent in zebrafish, the external cell layer. The resulting increase in endotome-derived cells that migrate to colonize the DA generates a dramatic increase in chemokine-dependent HSC induction. This study reveals the molecular basis for a novel somite lineage restriction mechanism and defines a new paradigm in induction of definitive HSCs.


Asunto(s)
Células Endoteliales/citología , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/metabolismo , Somitos/citología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Aorta/citología , Aorta/embriología , Biomarcadores/análisis , Movimiento Celular , Quimiocina CXCL12/análisis , Quimiocina CXCL12/metabolismo , Embrión de Pollo , Células Endoteliales/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/genética , Humanos , Ratones , Músculos/citología , Músculos/metabolismo , Mutación/genética , Somitos/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/genética , Proteínas Wnt/análisis , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/análisis , Proteínas de Pez Cebra/genética
14.
PLoS One ; 7(5): e36544, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574182

RESUMEN

The sequencing of numerous insect genomes has revealed dynamic changes in the number and identity of cytochrome P450 genes in different insects. In the evolutionary sense, the rapid birth and death of many P450 genes is observed, with only a small number of P450 genes showing orthology between insects with sequenced genomes. It is likely that these conserved P450s function in conserved pathways. In this study, we demonstrate the P450 gene, Cyp301a1, present in all insect genomes sequenced to date, affects the formation of the adult cuticle in Drosophila melanogaster. A Cyp301a1 piggyBac insertion mutant and RNAi of Cyp301a1 both show a similar cuticle malformation phenotype, which can be reduced by 20-hydroxyecdysone, suggesting that Cyp301a1 is an important gene involved in the formation of the adult cuticle and may be involved in ecdysone regulation in this tissue.


Asunto(s)
Secuencia Conservada , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Epidermis/enzimología , Epidermis/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/deficiencia , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/efectos de los fármacos , Ecdisterona/farmacología , Epidermis/anomalías , Epidermis/efectos de los fármacos , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genoma de los Insectos/genética , Masculino , Mutagénesis Insercional , Fenotipo , Interferencia de ARN , Factores de Tiempo
15.
Dev Biol ; 368(2): 193-202, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609552

RESUMEN

The Hedgehog (HH) signaling pathway is a central regulator of embryonic development, controlling the pattern and proliferation of a wide variety of organs. Previous studies have implicated the secreted protein, Scube2, in HH signal transduction in the zebrafish embryo (Hollway et al., 2006; Kawakami et al., 2005; Woods and Talbot, 2005) although the nature of the molecular function of Scube2 in this process has remained undefined. This analysis has been compounded by the fact that removal of Scube2 activity in the zebrafish embryo leads to only subtle defects in HH signal transduction in vivo (Barresi et al., 2000; Hollway et al., 2006; Ochi and Westerfield, 2007; van Eeden et al., 1996; Wolff et al., 2003). Here we present the discovery of two additional scube genes in zebrafish, scube1 and scube3, and demonstrate their roles in facilitating HH signal transduction. Knocking down the function of all three scube genes simultaneously phenocopies a complete loss of HH signal transduction in the embryo, revealing that Scube signaling is essential for HH signal transduction in vivo. We further define the molecular role of scube2 in HH signaling.


Asunto(s)
Proteínas de Unión al Calcio/genética , Embrión no Mamífero/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas Hedgehog/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Animales , Western Blotting , Células COS , Proteínas de Unión al Calcio/metabolismo , Chlorocebus aethiops , ADN Complementario/química , ADN Complementario/genética , Embrión no Mamífero/embriología , Proteínas de la Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Fenotipo , Análisis de Secuencia de ADN , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
16.
PLoS Biol ; 9(10): e1001168, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21990962

RESUMEN

Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Evolución Biológica , Peces/crecimiento & desarrollo , Desarrollo de Músculos , Pelvis/crecimiento & desarrollo , Aletas de Animales/anatomía & histología , Animales , Animales Modificados Genéticamente , Peces/genética , Pelvis/anatomía & histología , Filogenia , Somitos/trasplante , Especificidad de la Especie
17.
Dev Dyn ; 240(2): 422-31, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21246659

RESUMEN

Laminins are essential components of all basement membranes and are fundamental to tissue development and homeostasis. Humans possess at least 16 different heterotrimeric laminin complexes formed through different combinations of alpha, beta, and gamma chains. Individual chains appear to exhibit unique expression patterns, leading to the notion that overlap between expression domains governs the constitution of complexes found within particular tissues. However, the spatial and temporal expression of laminin genes has not been comprehensively analyzed in any vertebrate model to date. Here, we describe the tissue-specific expression patterns of all laminin genes in the zebrafish, throughout embryonic development and into the "post-juvenile" period, which is representative of the adult body form. In addition, we present phylogenetic and microsynteny analyses, which demonstrate that the majority of our zebrafish sequences are orthologous to human laminin genes. Together, these data represent a fundamental resource for the study of vertebrate laminins.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Laminina/genética , Familia de Multigenes , Isoformas de Proteínas/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Humanos , Hibridación in Situ , Laminina/clasificación , Laminina/metabolismo , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Sintenía , Distribución Tisular , Pez Cebra/anatomía & histología
18.
J Cell Mol Med ; 15(12): 2643-51, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21251213

RESUMEN

Duchenne muscular dystophy (DMD) is a severe muscle wasting disease caused by mutations in the dystrophin gene. By utilizing antisense oligonucleotides, splicing of the dystrophin transcript can be altered so that exons harbouring a mutation are excluded from the mature mRNA. Although this approach has been shown to be effective to restore partially functional dystrophin protein, the level of dystrophin protein that is necessary to rescue a severe muscle pathology has not been addressed. As zebrafish dystrophin mutants (dmd) resemble the severe muscle pathology of human patients, we have utilized this model to evaluate exon skipping. Novel dmd mutations were identified to enable the design of phenotype rescue studies via morpholino administration. Correlation of induced exon-skipping efficiency and the level of phenotype rescue suggest that relatively robust levels of exon skipping are required to achieve significant therapeutic ameliorations and that pre-screening analysis of exon-skipping drugs in zebrafish may help to more accurately predict clinical trials for therapies of DMD.


Asunto(s)
Distrofina/fisiología , Exones/genética , Distrofia Muscular de Duchenne/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Humanos , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
19.
Neuromuscul Disord ; 20(12): 826-32, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20850317

RESUMEN

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene. As in humans, zebrafish dystrophin is initially expressed at the peripheral ends of the myofibres adjacent to the myotendinous junction and gradually shifts to non-junctional sites. Dystrophin-deficient zebrafish larvae are characterised by abundant necrotic fibres being replaced by mono-nucleated infiltrates, extensive fibrosis accompanied by inflammation, and a broader variation in muscle fibre cross-sectional areas. Muscle progenitor proliferation cannot compensate for the extensive skeletal muscle loss. Live imaging of dystrophin-deficient zebrafish larvae documents detaching myofibres elicited by muscle contraction. Correspondingly, the progressive phenotype of dystrophin-deficient zebrafish resembles many aspects of the human disease, suggesting that specific advantages of the zebrafish model system, such as the ability to undertake in vivo drug screens and real time analysis of muscle fibre loss, could be used to make novel insights relevant to understanding and treating the pathological basis of dystrophin-deficient muscular dystrophy.


Asunto(s)
Distrofina/genética , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Distrofina/metabolismo , Inmunohistoquímica , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Fenotipo , Pez Cebra
20.
Development ; 136(19): 3367-76, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19736328

RESUMEN

The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin beta2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss.


Asunto(s)
Laminina/genética , Laminina/fisiología , Distrofia Muscular Animal/embriología , Distrofia Muscular Animal/genética , Mutación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Membrana Basal/patología , Supervivencia Celular , Cartilla de ADN/genética , Ojo/embriología , Homocigoto , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/patología , Sarcolema/patología , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...