Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 23: 551-566, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34853801

RESUMEN

Hemophilia A (HA) is a rare bleeding disorder caused by deficiency/dysfunction of the FVIII protein. As current therapies based on frequent FVIII infusions are not a definitive cure, long-term expression of FVIII in endothelial cells through lentiviral vector (LV)-mediated gene transfer holds the promise of a one-time treatment. Thus, here we sought to determine whether LV-corrected blood outgrowth endothelial cells (BOECs) implanted through a prevascularized medical device (Cell Pouch) would rescue the bleeding phenotype of HA mice. To this end, BOECs from HA patients and healthy donors were isolated, expanded, and transduced with an LV carrying FVIII driven by an endothelial-specific promoter employing GMP-like procedures. FVIII-corrected HA BOECs were either directly transplanted into the peritoneal cavity or injected into a Cell Pouch implanted subcutaneously in NSG-HA mice. In both cases, FVIII secretion was sufficient to improve the mouse bleeding phenotype. Indeed, FVIII-corrected HA BOECs reached a relatively short-term clinically relevant engraftment being detected up to 16 weeks after transplantation, and their genomic integration profile did not show enrichment for oncogenes, confirming the process safety. Overall, this is the first preclinical study showing the safety and feasibility of transplantation of GMP-like produced LV-corrected BOECs within an implantable device for the long-term treatment of HA.

2.
Mol Ther Methods Clin Dev ; 18: 176-188, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32637449

RESUMEN

The investigation of the biodistribution profile of a cell-based medicinal product is a pivotal prerequisite to allow a factual benefit-risk assessment within the non-clinical to clinical translation in product development. Here, a qPCR-based method to determine the amount of human DNA in mouse DNA was validated according to the guidelines of the European Medicines Agency and the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Furthermore, a preclinical worst-case scenario study was performed in which this method was applied to investigate the biodistribution of 2 × 106 intravenously administered, genetically modified, blood outgrowth endothelial cells from hemophilia A patients after 24 h and 7 days. The validation of the qPCR method demonstrated high accuracy, precision, and linearity for the concentration interval of 1:1 × 103 to 1:1 × 106 human to mouse DNA. The application of this method in the biodistribution study resulted in the detection of human genomes in four out of the eight investigated organs after 24 h. After 7 days, no human DNA was detected in the eight organs analyzed. This biodistribution study provides mandatory data on the toxicokinetic safety profile of an actual candidate cell-based medicinal product. The extensive evaluation of the required validation parameters confirms the applicability of the qPCR method for non-clinical biodistribution studies.

3.
Mol Ther Nucleic Acids ; 14: 364-376, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690229

RESUMEN

Gene therapy represents an attractive alternative to treat hemophilia B. Here we established three hepatocyte-derived cell lines based on Huh7, PLC/PRF/5, and Hep3B cells stably carrying a mutated canine FIX (cFIXmut) transgene containing a single point mutation in the catalytic domain. Based on these in vitro models resembling a commonly used canine large animal model, the tetracycline-controlled transcriptional activator (Tet-on)-inducible CRISPR/Cas9 system and an optimized donor were used to correct mutated cFIX gene through homology-directed repair (HDR). For efficient delivery of designer nuclease and donor DNA, we produced a high-capacity adenovirus vector type 5 (HCAdV5) containing the Tet-on-inducible cFIX-specific CRISPR/Cas9 system and a single-stranded adeno-associated virus type 2 vector (ssAAV2) containing the modified donor. Moreover, we designed a single HCAdV5 delivering all components for HDR. Our amplification-refractory mutation system based on qPCR analysis (ARMS-qPCR) revealed that the single vector application in Huh7-cFIXmut cells resulted in up to 5.52% HDR efficiencies, which was superior to the two-vector strategy. Furthermore the single vector also resulted in increased phenotypic correction efficiencies assayed by ELISA. We conclude that HDR in combination with viral vector delivery holds great promise for the correction of mutated FIX in disease models.

4.
Mol Ther Nucleic Acids ; 12: 242-253, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30195763

RESUMEN

High-capacity adenoviral vectors (HCAdVs) devoid of all coding genes are powerful tools to deliver large DNA cargos into cells. Here HCAdVs were designed to deliver a multiplexed complete CRISPR/Cas9 nuclease system or a complete pair of transcription activator-like effector nucleases (TALENs) directed against the hepatitis B virus (HBV) genome. HBV, which remains a serious global health burden, forms covalently closed circular DNA (cccDNA) as a persistent DNA species in infected cells. This cccDNA promotes the chronic carrier status, and it represents a major hurdle in the treatment of chronic HBV infection. To date, only one study demonstrated viral delivery of a CRISPR/Cas9 system and a single guide RNA (gRNA) directed against HBV by adeno-associated viral (AAV) vectors. The advancement of this study is the co-delivery of multiple gRNA expression cassettes along with the Cas9 expression cassette in one HCAdV. Treatment of HBV infection models resulted in a significant reduction of HBV antigen production and the introduction of mutations into the HBV genome. In the transduction experiments, the HBV genome, including the HBV cccDNA, was degraded by the CRISPR/Cas9 system. In contrast, the combination of two parts of a TALEN pair in one vector could not be proven to yield an active system. In conclusion, we successfully delivered the CRISPR/Cas9 system containing three gRNAs using HCAdV, and we demonstrated its antiviral effect.

5.
J Gene Med ; 20(5): e3020, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29608237

RESUMEN

BACKGROUND: Gene correction at specific target loci provides a powerful strategy for overcoming genetic diseases. In the present study, we aimed to use an in vitro model for canine hemophilia B containing a single point mutation in the catalytic domain of the canine coagulation factor IX (cFIX) gene. To correct the defective gene via homology-directed repair (HDR), we designed transcription-activator like effector nucleases and clustered regularly interspaced short palindromic repeats including Cas9 (CRISPR/Cas9) for introduction of double-strand breaks at the mutation site. METHODS: To generate a stable cell line containing the mutated cFIX locus, a 2-kb genomic DNA fragment derived from a hemophilia B dog was amplified and integrated utilizing the phiC31 integrase system. Designer nucleases were assembled and cloned into vectors for constitutive and inducible expression. To detect mutations, insertions and deletions, and HDR events after nuclease treatment T7E1 assays, an amplification-refractory mutation system-quantitative polymerase chain reaction and pyrosequencing were performed. RESULTS: To perform HDR correction experiments, we established a cell line carrying the mutated cFIX locus. In HDR approaches we either explored a wild-type or an optimized cFIX sequence and we found that our modified HDR cassette showed higher gene correction efficiencies of up to 6.4%. Furthermore, we compared inducible and constitutive designer nuclease expression systems and found that the inducible system resulted in comparable HDR efficiencies. CONCLUSIONS: In conclusion, the present study demonstrates the potential of this strategy for gene therapeutic approaches in vitro and in a canine model for hemophilia B.


Asunto(s)
Roturas del ADN de Doble Cadena , Enfermedades de los Perros/genética , Endonucleasas/genética , Factor IX/genética , Marcación de Gen/métodos , Hemofilia B/genética , Reparación del ADN por Recombinación , Animales , Sistemas CRISPR-Cas/genética , Enfermedades de los Perros/terapia , Perros , Endonucleasas/metabolismo , Edición Génica/métodos , Ingeniería Genética/métodos , Células HEK293 , Hemofilia B/terapia , Humanos
6.
Sci Rep ; 7(1): 17113, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215041

RESUMEN

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.


Asunto(s)
Adenoviridae/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Distrofina/genética , Distrofina/metabolismo , Células HeLa , Humanos , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo
7.
Cell Rep ; 19(8): 1698-1709, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28538186

RESUMEN

Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource.


Asunto(s)
Adenoviridae/genética , Biblioteca de Genes , Ingeniería Genética , Vectores Genéticos/metabolismo , Secuencia de Bases , Clonación Molecular , Genes Reporteros , Genoma Viral , Ensayos Analíticos de Alto Rendimiento , Humanos
8.
Mol Ther Methods Clin Dev ; 3: 16047, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27419195

RESUMEN

Designer nucleases are broadly applied to induce site-specific DNA double-strand breaks (DSB) in genomic DNA. These are repaired by nonhomologous end joining leading to insertions or deletions (in/dels) at the respective DNA-locus. To detect in/del mutations, the heteroduplex based T7-endonuclease I -assay is widely used. However, it only provides semi-quantitative evidence regarding the number of mutated alleles. Here we compared T7-endonuclease I- and heteroduplex mobility assays, with a quantitative polymerase chain reaction mutation detection method. A zinc finger nuclease pair specific for the human adeno-associated virus integration site 1 (AAVS1), a transcription activator-like effector nuclease pair specific for the human DMD gene, and a zinc finger nuclease- and a transcription activator-like effector nuclease pair specific for the human CCR5 gene were explored. We found that the heteroduplex mobility assays and T7-endonuclease I - assays detected mutations but the relative number of mutated cells/alleles can only be estimated. In contrast, the quantitative polymerase chain reaction based method provided quantitative results which allow calculating mutation and homologous recombination rates in different eukaryotic cell types including human peripheral blood mononuclear cells. In conclusion, our quantitative polymerase chain reaction based mutation detection method expands the array of methods for in/del mutation detection and facilitates quantification of introduced in/del mutations for a genomic locus containing a mixture of mutated and unmutated DNA.

9.
J Vis Exp ; (107): e52894, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26863087

RESUMEN

High-capacity adenoviral vectors (HCAdV) devoid of all viral coding sequences represent one of the most advanced gene delivery vectors due to their high packaging capacity (up to 35 kb), low immunogenicity and low toxicity. However, for many laboratories the use of HCAdV is hampered by the complicated procedure for vector genome construction and virus production. Here, a detailed protocol for efficient cloning and production of HCAdV based on the plasmid pAdFTC containing the HCAdV genome is described. The construction of HCAdV genomes is based on a cloning vector system utilizing homing endonucleases (I-CeuI and PI-SceI). Any gene of interest of up to 14 kb can be subcloned into the shuttle vector pHM5, which contains a multiple cloning site flanked by I-CeuI and PI-SceI. After I-CeuI and PI-SceI-mediated release of the transgene from the shuttle vector the transgene can be inserted into the HCAdV cloning vector pAdFTC. Because of the large size of the pAdFTC plasmid and the long recognition sites of the used enzymes associated with strong DNA binding, careful handling of the cloning fragments is needed. For virus production, the HCAdV genome is released by NotI digest and transfected into a HEK293 based producer cell line stably expressing Cre recombinase. To provide all adenoviral genes for adenovirus amplification, co-infection with a helper virus containing a packing signal flanked by loxP sites is required. Pre-amplification of the vector is performed in producer cells grown on surfaces and large-scale amplification of the vector is conducted in spinner flasks with producer cells grown in suspension. For virus purification, two ultracentrifugation steps based on cesium chloride gradients are performed followed by dialysis. Here tips, tricks and shortcuts developed over the past years working with this HCAdV vector system are presented.


Asunto(s)
Adenovirus Humanos/genética , Clonación Molecular/métodos , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Virus Helper/genética , Adenovirus Humanos/fisiología , Secuencia de Bases , Vectores Genéticos/fisiología , Células HEK293 , Virus Helper/fisiología , Humanos , Integrasas , Plásmidos/genética , Transfección , Transgenes
10.
World J Hepatol ; 7(2): 150-64, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25729471

RESUMEN

Acute and chronic hepatitis B virus (HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellular carcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV.

11.
Hum Gene Ther Methods ; 26(1): 25-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25640117

RESUMEN

High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/normas , Reacción en Cadena de la Polimerasa/métodos , Adenoviridae/química , Secuencia de Bases , Línea Celular Tumoral , Vectores Genéticos/química , Vectores Genéticos/genética , Células HEK293 , Humanos , Datos de Secuencia Molecular , Control de Calidad
12.
Lung India ; 29(4): 309-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23243341

RESUMEN

CONTEXT: The treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) is consistently difficult. Besides resistances, drug availability can be problematic and costs for therapy are high. AIMS: Our aim was to evaluate alternatives in treatment of MDR and XDR TB other than using second-line drugs. MATERIALS AND METHODS: We analyzed retrospectively the minimal inhibitory concentrations (MICs) of first-line drugs for 44 multidrug-resistant Mycobacterium tuberculosis isolates determined in our institute over a period of 20 years (1990 - 2010, n = 44). Drug susceptibility testing (DST) was performed using the proportion method on Lowenstein-Jensen Medium or Middlebrook 7H10 agar. MICs were defined as the lowest drug concentration after two-fold serially diluted concentration of the drugs that inhibits growth of more than 99.0% of a bacterial proportion of the tested M. tuberculosis within 14 to 21 days of incubation at 37°C. STATISTICAL ANALYSIS USED: Summation. RESULTS: The MICs of isoniazid and ethambutol were equal or slightly above the critical concentration in most of the strains (92% and 84%, respectively), defined as "low-level resistance". Rifampicin and streptomycin exhibited very high MICs in most of the strains (100% and 77%, respectively), indicating a "high-level resistance". CONCLUSION: Our results indicate that isoniazid and ethambutol could still play a role in treating MDR and XDR TB patients if low-level resistance is detected. Quantitative DST seems to be promising for the recognition of residual drug activity, but has to be confirmed by clinical studies.

13.
J Biomed Opt ; 17(10): 106011, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23224010

RESUMEN

A confocal imaging and image processing scheme is introduced to visualize and evaluate the spatial distribution of spectral information in tissue. The image data are recorded using a confocal laser-scanning microscope equipped with a detection unit that provides high spectral resolution. The processing scheme is based on spectral data, is less error-prone than intensity-based visualization and evaluation methods, and provides quantitative information on the composition of the sample. The method is tested and validated in the context of the development of dermal drug delivery systems, introducing a quantitative uptake indicator to compare the performances of different delivery systems is introduced. A drug penetration study was performed in vitro. The results show that the method is able to detect, visualize and measure spectral information in tissue. In the penetration study, uptake efficiencies of different experiment setups could be discriminated and quantitatively described. The developed uptake indicator is a step towards a quantitative assessment and, in a more general view apart from pharmaceutical research, provides valuable information on tissue composition. It can potentially be used for clinical in vitro and in vivo applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Absorción Cutánea/fisiología , Animales , Sistemas de Liberación de Medicamentos , Emulsiones/química , Emulsiones/metabolismo , Modelos Biológicos , Oxazinas/química , Oxazinas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , Reproducibilidad de los Resultados , Piel/química , Piel/metabolismo , Porcinos
14.
Tuberc Res Treat ; 2012: 768723, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22567275

RESUMEN

Interferon gamma release assays (IGRAs) are in vitro immunologic diagnostic tests used to identify Mycobacterium tuberculosis infection. They cannot differentiate between latent and active infections. The cutoff suggested by the manufacturer is 0.35 IU/mL for latent tuberculosis. As IGRA tests were recently approved for the differential diagnosis of active tuberculosis, we assessed the diagnostic accuracy of the latest generation IGRA for detection of active tuberculosis in a low-incidence area in Germany. Our consecutive case series includes 61 HIV negative, Mycobacterium tuberculosis culture positive patients, as well as 234 control patients. The retrospective analysis was performed over a period of two years. In 11/61 patients with active tuberculosis (18.0%) the test result was <0.35 IU/mL, resulting in a sensitivity of 0.82. We recommend establishing a new cut-off value for the differential diagnosis of active tuberculosis assessed by prospective clinical studies and in various regions with high and low prevalence of tuberculosis.

15.
Plant Physiol ; 154(4): 1831-41, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20940346

RESUMEN

High mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that as architectural factors are involved in the regulation of transcription and other DNA-dependent processes. HMGB proteins are generally considered nuclear proteins, although mammalian HMGB1 can also be detected in the cytoplasm and outside of cells. Plant HMGB proteins studied so far were found exclusively in the cell nucleus. Using immunofluorescence and fluorescence microscopy of HMGB proteins fused to the green fluorescent protein, we have examined the subcellular localization of the Arabidopsis (Arabidopsis thaliana) HMGB2/3 and HMGB4 proteins, revealing that, in addition to a prominent nuclear localization, they can be detected also in the cytoplasm. The nucleocytoplasmic distribution appears to depend on the cell type. By time-lapse fluorescence microscopy, it was observed that the HMGB2 and HMGB4 proteins tagged with photoactivatable green fluorescent protein can shuttle between the nucleus and the cytoplasm, while HMGB1 remains nuclear. The balance between the basic amino-terminal and the acidic carboxyl-terminal domains flanking the central HMG box DNA-binding domain critically influences the nucleocytoplasmic distribution of the HMGB proteins. Moreover, protein kinase CK2-mediated phosphorylation of the acidic tail modulates the intranuclear distribution of HMGB2. Collectively, our results show that, in contrast to other Arabidopsis HMGB proteins such as HMGB1 and HMGB5, the HMGB2/3 and HMGB4 proteins occur preferentially in the cell nucleus, but to various extents also in the cytoplasm.


Asunto(s)
Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Proteínas HMGB/metabolismo , Secuencia de Aminoácidos , Proteínas HMGB/química , Datos de Secuencia Molecular , Fosforilación , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...