Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672487

RESUMEN

Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Factores de Virulencia , Mycobacterium tuberculosis/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/química , Factores de Virulencia/inmunología , Factores de Virulencia/química , Humanos , Vacunas contra la Tuberculosis/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Tuberculosis/inmunología , Tuberculosis/prevención & control , Tuberculosis/microbiología , Animales , Chaperonas Moleculares/inmunología , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo
2.
mBio ; 14(5): e0132923, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37707438

RESUMEN

IMPORTANCE: In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.


Asunto(s)
Bacteriófagos , Klebsiella , Klebsiella/genética , Bacteriófagos/genética , Klebsiella pneumoniae/genética
3.
Biomolecules ; 13(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37627265

RESUMEN

Tuberculosis (TB) remains one of the main causes of death by infection, especially in immunocompromised patients [...].


Asunto(s)
Tuberculosis , Factores de Virulencia , Humanos , Huésped Inmunocomprometido
4.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239905

RESUMEN

CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.


Asunto(s)
Proteínas del Sistema Complemento , VIH-1 , Humanos , Sitios de Unión de Anticuerpos , Proteínas del Sistema Complemento/metabolismo , Antígenos CD59/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Inactivadores del Complemento , VIH-1/fisiología
5.
Biomolecules ; 13(5)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37238682

RESUMEN

BACKGROUND: The mycobacterial PE_PGRS protein family is present only in pathogenic strains of the genus mycobacterium, such as Mtb and members of the MTB complex, suggesting a likely important role of this family in pathogenesis. Their PGRS domains are highly polymorphic and have been suggested to cause antigenic variations and facilitate pathogen survival. The availability of AlphaFold2.0 offered us a unique opportunity to better understand structural and functional properties of these domains and a role of polymorphism in Mtb evolution and dissemination. METHODS: We made extensive use of AlphaFold2.0 computations and coupled them with sequence distribution phylogenetic and frequency analyses, and antigenic predictions. RESULTS: Modeling of several polymorphic forms of PE_PGRS33, the prototype of the PE_PGRS family and sequence analyses allowed us to predict the structural impact of mutations/deletions/insertions present in the most frequent variants. These analyses well correlate with the observed frequency and with the phenotypic features of the described variants. CONCLUSIONS: Here, we provide a thorough description of structural impacts of the observed polymorphism of PE_PGRS33 protein and we correlate predicted structures to the known fitness of strains containing specific variants. Finally, we also identify protein variants associated with bacterial evolution, showing sophisticated modifications likely endowed with a gain-of-function role during bacterial evolution.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Filogenia , Proteínas Bacterianas/metabolismo , Polimorfismo Genético , Mutación
6.
Microbiologyopen ; 12(1): e1311, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36825886

RESUMEN

Universal stress proteins (USPs) are ubiquitously expressed in bacteria, archaea, and eukaryotes and play a lead role in adaptation to environmental conditions. They enable adaptation of bacterial pathogens to the conditions encountered in the human niche, including hypoxia, oxidative stress, osmotic stress, nutrient deficiency, or acid stress, thereby facilitating colonization. We previously reported that all six USP proteins encoded within a low-oxygen activated (lxa) locus in Burkholderia cenocepacia showed increased abundance during chronic colonization of the cystic fibrosis (CF) lung. However, the role of USPs in chronic cystic fibrosis infection is not well understood. Structural modeling identified surface arginines on one lxa-encoded USP, USP76, which suggested it mediated interactions with heparan sulfate. Using mutants derived from the B. cenocepacia strain, K56-2, we show that USP76 is involved in host cell attachment. Pretreatment of lung epithelial cells with heparanase reduced the binding of the wild-type and complement strains but not the Δusp76 mutant strain, indicating that USP76 is directly or indirectly involved in receptor recognition on the surface of epithelial cells. We also show that USP76 is required for growth and survival in many conditions associated with the CF lung, including acidic conditions and oxidative stress. Moreover, USP76 also has a role in survival in macrophages isolated from people with CF. Overall, while further elucidation of the exact mechanism(s) is required, we can conclude that USP76, which is upregulated during chronic infection, is involved in bacterial survival within CF macrophages, a hallmark of Burkholderia infection.


Asunto(s)
Infecciones por Burkholderia , Burkholderia cenocepacia , Fibrosis Quística , Humanos , Burkholderia cenocepacia/metabolismo , Proteínas de Choque Térmico/metabolismo , Infección Persistente , Hipoxia
7.
Cells ; 12(2)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672252

RESUMEN

Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.


Asunto(s)
Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Humanos , Tuberculosis/prevención & control , Vacuna BCG , Vacunas de Subunidad
8.
Cells ; 11(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36497063

RESUMEN

The global threat of antimicrobial resistance (AMR) poses a difficult challenge, as underscored by the World Health Organization (WHO), which identifies AMR as one of the three greatest threats to human health [...].


Asunto(s)
Vacunas Bacterianas , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Organización Mundial de la Salud
9.
Cells ; 11(22)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36429024

RESUMEN

COVID-19 (coronavirus disease 2019) is a threatening disease caused by the novel enveloped, positive-sense, single-stranded RNA beta-coronavirus, denoted as SARS-CoV-2 [...].


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Virulencia , ARN , Brotes de Enfermedades
10.
Int J Biol Macromol ; 221: 1012-1021, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36113585

RESUMEN

Ageritin is a ribotoxin-like protein of biotechnological interest, belonging to a family of ribonucleases from edible mushrooms. Its enzymatic activity is explicated through the hydrolysis of a single phosphodiester bond, located in the sarcin/ricin loop of ribosomes. Unlike other ribotoxins, ageritin activity requires divalent cations (Zn2+). Here we investigated the conformational stability of ageritin in the pH range 4.0-7.4, using calorimetric and spectroscopic techniques. We observed a high protein thermal stability at all pHs with a denaturation temperature of 78 °C. At pH 5.0 we calculated a value of 36 kJ mol-1 for the unfolding Gibbs energy at 25 °C. We also analysed the thermodynamic and catalytic behaviour of S-pyridylethylated form, obtained by alkylating the single Cys18 residue, which is predicted to bind Zn2+. We show that this form possesses the same activity and structure of ageritin, but lower stability. In fact, the corresponding values of 52 °C and 14 kJ mol-1 were found. Conservation of activity is consistent with the location of alkylation site on the opposite site of the catalytic site cleft. Inasmuch as Cys18 is part of a structurally stabilizing zinc-binding site, disrupted by cysteine alkylation, our results point to an important role of metal ions in ageritin stability.


Asunto(s)
Agaricales , Ribonucleasas , Ribonucleasas/química , Ribosomas/metabolismo , Agaricales/química , Genes Fúngicos , Desnaturalización Proteica , Termodinámica
11.
PLoS Pathog ; 18(9): e1010760, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36048802

RESUMEN

The impact of artificial intelligence (AI) in understanding biological processes is potentially immense. Structural elucidation of mycobacterial PE_PGRS is sustenance to unveil the role of these enigmatic proteins. We propose a PGRS "sailing" model as a smart tool to diffuse along the mycomembrane, to expose structural motifs for host interactions, and/or to ship functional protein modules at their C-terminus.


Asunto(s)
Antígenos Bacterianos , Mycobacterium tuberculosis , Antígenos Bacterianos/metabolismo , Inteligencia Artificial , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Mycobacterium tuberculosis/metabolismo
12.
Front Mol Biosci ; 9: 964645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032688

RESUMEN

Vaccine development against Tuberculosis is a strong need, given the low efficacy of the sole vaccine hitherto used, the Bacillus Calmette-Guérin (BCG) vaccine. The chaperone-like protein HtpGMtb of M. tuberculosis is a large dimeric and multi-domain protein with promising antigenic properties. We here used biophysical and biochemical studies to improve our understanding of the structural basis of HtpGMtb functional role and immunogenicity, a precious information to engineer improved antigens. We showed that HtpGMtb is a dimeric nucleotide-binding protein and identified the dimerisation interface on the C-terminal domain of the protein. We also showed that the most immunoreactive regions of the molecule are located on the C-terminal and middle domains of the protein, whereas no role is played by the catalytic N-terminal domain in the elicitation of the immune response. Based on these observations, we experimentally validated our predictions in mice, using a plethora of immunological assays. As an outcome, we designed vaccine antigens with enhanced biophysical properties and ease of production, albeit conserved or enhanced antigenic properties. Our results prove the efficacy of structural vaccinology approaches in improving our understanding of the structural basis of immunogenicity, a precious information to engineer more stable, homogeneous, efficiently produced, and effective vaccine antigens.

13.
Antibiotics (Basel) ; 11(7)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35884215

RESUMEN

The spread of microorganisms causing health-care associated infection (HAI) is contributed to by their intrinsic tolerance to a variety of biocides, used as antiseptics or disinfectants. The natural monomeric stilbenoid resveratrol (RV) is able to modulate the susceptibility to the chlorhexidine digluconate (CHX) biocide in Acinetobacter baumannii. In this study, a panel of reference strains and clinical isolates of Gram-negative bacteria, Gram-positive bacteria and yeasts were analyzed for susceptibility to CHX and benzalkonium chloride (BZK) and found to be tolerant to one or both biocides. The carbonyl cyanide m-chlorophenylhydrazine protonophore (CCCP) efflux pump inhibitor reduced the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CHX and BZK in the majority of strains. RV reduced dose-dependently MIC and MBC of CHX and BZK biocides when used as single agents or in combination in all analyzed strains, but not CHX MIC and MBC in Pseudomonas aeruginosa, Candida albicans, Klebsiella pneumoniae, Stenotrophomonas maltophilia and Burkholderia spp. strains. In conclusion, RV reverts tolerance and restores susceptibility to CHX and BZK in the majority of microorganisms responsible for HAI. These results indicates that the combination of RV, CHX and BZK may represent a useful strategy to maintain susceptibility to biocides in several nosocomial pathogens.

14.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628409

RESUMEN

Coronaviruses, including SARS-CoV-2 (the etiological agent of the current COVID-19 pandemic), rely on the surface spike glycoprotein to access the host cells, mainly through the interaction of their receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2). Therefore, molecular entities able to interfere with the binding of the SARS-CoV-2 spike protein to ACE2 have great potential to inhibit viral entry. Starting from the available structural data on the interaction between SARS-CoV-2 spike protein and the host ACE2 receptor, we engineered a set of soluble and stable spike interactors, here denoted as S-plugs. Starting from the prototype S-plug, we adopted a computational approach by combining stability prediction, associated to single-point mutations, with molecular dynamics to enhance both S-plug thermostability and binding affinity to the spike protein. The best developed molecule, S-plug3, possesses a highly stable α-helical con-formation (with melting temperature Tm of 54 °C) and can interact with the spike RBD and S1 domains with similar low nanomolar affinities. Importantly, S-plug3 exposes the spike RBD to almost the same interface as the human ACE2 receptor, aimed at the recognition of all ACE2-accessing coronaviruses. Consistently, S-plug3 preserves a low nanomolar dissociation constant with the delta B.1.617.2 variant of SARS-CoV-2 spike protein (KD = 29.2 ± 0.6 nM). Taken together, we provide valid starting data for the development of therapeutical and diagnostic tools against coronaviruses accessing through ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/química
15.
Microbiologyopen ; 11(1): e1264, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35212475

RESUMEN

Adaptation of opportunistic pathogens to their host environment requires reprogramming of a vast array of genes to facilitate survival in the host. Burkholderia cenocepacia, a Gram-negative bacterium with a large genome of ∼8 Mb that colonizes environmental niches, is exquisitely adaptable to the hypoxic environment of the cystic fibrosis lung and survives in macrophages. We previously identified an immunoreactive acidic protein encoded on replicon 3, BCAS0292. Deletion of the BCAS0292 gene significantly altered the abundance of 979 proteins by 1.5-fold or more; 19 proteins became undetectable while 545 proteins showed ≥1.5-fold reduced abundance, suggesting the BCAS0292 protein is a global regulator. Moreover, the ∆BCAS0292 mutant showed a range of pleiotropic effects: virulence and host-cell attachment were reduced, antibiotic susceptibility was altered, and biofilm formation enhanced. Its growth and survival were impaired in 6% oxygen. In silico prediction of its three-dimensional structure revealed BCAS0292 presents a dimeric ß-structure with a negative surface charge. The ΔBCAS0292 mutant displayed altered DNA supercoiling, implicated in global regulation of gene expression. Three proteins were identified in pull-downs with FLAG-tagged BCAS0292, including the Histone H1-like protein, HctB, which is recognized as a global transcriptional regulator. We propose that BCAS0292 protein, which we have named Burkholderia negatively surface-charged regulatory protein 1 (Bnr1), acts as a DNA-mimic and binds to DNA-binding proteins, altering DNA topology and regulating the expression of multiple genes, thereby enabling the adaptation of B. cenocepacia to highly diverse environments.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Bacterianas/fisiología , Burkholderia cenocepacia/fisiología , ADN Bacteriano/fisiología , Imitación Molecular/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidad , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes/genética , Virulencia
16.
Curr Med Chem ; 29(24): 4282-4292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35125077

RESUMEN

BACKGROUND: Peptidoglycan is an essential component of the cell wall in all bacteria. In particular, the cell walls of Gram-positive bacteria are composed mostly of a thick layer of peptidoglycan. Its accessibility has important implications for their sensing in whole bacterial detection methodologies. Indeed, there is an urgent demand for rapid tests which can identify whole bacteria, e.g., directly at the point of care. OBJECTIVE: The aim of this work is to explore the suitability of RipA, a key cell division protein of M. tuberculosis, for whole cell biosensing of Gram-positive bacteria. METHODS: We here conducted Molecular Dynamics (MD) studies aimed at the understanding of the structural and dynamic features of active RipA and at the design of a suitable bioreceptor. Based on these studies, we engineered a RipA variant for covalent oriented immobilisation on golden surfaces and are able to bind peptidoglycan, albeit without degrading it. Surface Plasmon Resonance (SPR) was employed to check the ability of functionalized golden chips to recognize whole bacteria. RESULTS: MD analyses elucidated the structural details of the active form of RipA and suggested that this enzyme, once inactivated, presents a rigid and well-exposed peptidoglycan recognition cleft. We engineered RipA for proper oriented immobilisation on golden chips for SPR studies. Results show that once chemically coupled to a golden chip, the developed RipA-based bioreceptor is able to detect B. subtilis, used as a model in a concentration-dependent mode. CONCLUSION: Results highlight the potential of the engineered molecule to be integrated in the development of early warning biosensors for Gram-positive contamination in clinical diagnosis or food-borne infections.


Asunto(s)
Proteínas Bacterianas , Endopeptidasas , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Endopeptidasas/metabolismo , Hidrolasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo
17.
Sci Rep ; 11(1): 24495, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34969951

RESUMEN

The ability of SARS-CoV-2 to rapidly mutate represents a remarkable complicancy. Quantitative evaluations of the effects that these mutations have on the virus structure/function is of great relevance and the availability of a large number of SARS-CoV-2 sequences since the early phases of the pandemic represents a unique opportunity to follow the adaptation of the virus to humans. Here, we evaluated the SARS-CoV-2 amino acid mutations and their progression by analyzing publicly available viral genomes at three stages of the pandemic (2020 March 15th and October 7th, 2021 February 7th). Mutations were classified in conservative and non-conservative based on the probability to be accepted during the evolution according to the Point Accepted Mutation substitution matrices and on the similarity of the encoding codons. We found that the most frequent substitutions are T > I, L > F, and A > V and we observe accumulation of hydrophobic residues. These findings are consistent among the three stages analyzed. We also found that non-conservative mutations are less frequent than conservative ones. This finding may be ascribed to a progressive adaptation of the virus to the host. In conclusion, the present study provides indications of the early evolution of the virus and tools for the global and genome-specific evaluation of the possible impact of mutations on the structure/function of SARS-CoV-2 variants.


Asunto(s)
COVID-19/virología , Variación Genética , Genoma Viral , Pandemias , SARS-CoV-2/genética , Humanos , Mutación
18.
Biomolecules ; 11(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944504

RESUMEN

One of the most striking features of KCTD proteins is their involvement in apparently unrelated yet fundamental physio-pathological processes. Unfortunately, comprehensive structure-function relationships for this protein family have been hampered by the scarcity of the structural data available. This scenario is rapidly changing due to the release of the protein three-dimensional models predicted by AlphaFold (AF). Here, we exploited the structural information contained in the AF database to gain insights into the relationships among the members of the KCTD family with the aim of facilitating the definition of the structural and molecular basis of key roles that these proteins play in many biological processes. The most important finding that emerged from this investigation is the discovery that, in addition to the BTB domain, the vast majority of these proteins also share a structurally similar domain in the C-terminal region despite the absence of general sequence similarities detectable in this region. Using this domain as reference, we generated a novel and comprehensive structure-based pseudo-phylogenetic tree that unraveled previously undetected similarities among the protein family. In particular, we generated a new clustering of the KCTD proteins that will represent a solid ground for interpreting their many functions.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Humanos , Modelos Moleculares , Filogenia , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína
19.
Vaccines (Basel) ; 9(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835150

RESUMEN

Burkholderia pseudomallei is an infectious bacterium of clinical and biodefense concern, and is the causative agent of melioidosis. The mortality rate can reach up to 50% and affects 165,000 people per year; however, there is currently no vaccine available. In this study, we examine the antigen-specific immune response to a vaccine formulated with antigens derived from an outer membrane protein in B. pseudomallei, Bucl8. Here, we employed a number of bioinformatic tools to predict Bucl8-derived epitopes that are non-allergenic and non-toxic, but would elicit an immune response. From these data, we formulated a vaccine based on two extracellular components of Bucl8, the ß-barrel loops and extended collagen and non-collagen domains. Outbred CD-1 mice were immunized with vaccine formulations-composed of recombinant proteins or conjugated synthetic peptides with adjuvant-to assess the antigen-specific immune responses in mouse sera and lymphoid organs. We found that mice vaccinated with either Bucl8-derived components generated a robust TH2-skewed antibody response when antigen was combined with the adjuvant AddaVax, while the TH1 response was limited. Mice immunized with synthetic loop peptides had a stronger, more consistent antibody response than recombinant protein antigens, based on higher IgG titers and recognition of bacteria. We then compared peptide-based vaccines in an established C57BL/6 inbred mouse model and observed a similar TH2-skewed response. The resulting formulations will be applied in future studies examining the protection of Bucl8-derived vaccines.

20.
Int J Biol Macromol ; 182: 1455-1462, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015405

RESUMEN

CD55 is a major regulator of the complement system, a complex network of proteins that cooperate to clear tissue and blood pathogens from the organism. Indeed, overexpression of CD55 is associated with many diseases and is connected to the resistance mechanisms exhibited by several cancers towards immunotherapy approaches. High level of CD55 expression on tumour cells renders it a good target for both imaging and immunotherapy. Indeed, a conceivable approach to tackle disease is to interfere with CD55-mediated complement regulation with the use of CD55-targeting antibodies. However, the large size and poor tissue penetration together with to the high costs of antibodies often limits their widespread therapeutic use. Here, we employed bioinformatic and chemical approaches to design and synthesize molecules of small dimensions able to mimic a CD55 blocking antibody. As a result, a bicyclic peptide, named as miniAB55, proved to bind CD55 with nanomolar affinity. This molecule represents an attracting chemical scaffold for CD55-directed diagnostic tools in diseases associated with CD55 overproduction. To further support the applicative potential of miniAB55, we prove that the miniAB55 binds CD55 on the same region involved in inactivation of the complement C3 and C5 convertases, thus opening promising scenarios for the development of complement-modulating tools.


Asunto(s)
Anticuerpos/farmacología , Antígenos CD55/inmunología , Miniaturización , Péptidos Cíclicos/química , Secuencia de Aminoácidos , Sitios de Unión de Anticuerpos/inmunología , Antígenos CD55/química , Ciclización , Humanos , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...