Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2539, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570531

RESUMEN

Cell segregation allows the compartmentalization of cells with similar fates during morphogenesis, which can be enhanced by cell fate plasticity in response to local molecular and biomechanical cues. Endothelial tip cells in the growing retina, which lead vessel sprouts, give rise to arterial endothelial cells and thereby mediate arterial growth. Here, we have combined cell type-specific and inducible mouse genetics, flow experiments in vitro, single-cell RNA sequencing and biochemistry to show that the balance between ephrin-B2 and its receptor EphB4 is critical for arterial specification, cell sorting and arteriovenous patterning. At the molecular level, elevated ephrin-B2 function after loss of EphB4 enhances signaling responses by the Notch pathway, VEGF and the transcription factor Dach1, which is influenced by endothelial shear stress. Our findings reveal how Eph-ephrin interactions integrate cell segregation and arteriovenous specification in the vasculature, which has potential relevance for human vascular malformations caused by EPHB4 mutations.


Asunto(s)
Células Endoteliales , Efrinas , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Arterias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Separación Celular , Receptor EphB4/genética , Receptor EphB4/metabolismo
2.
Elife ; 112022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119364

RESUMEN

Declining bone mass is associated with aging and osteoporosis, a disease characterized by progressive weakening of the skeleton and increased fracture incidence. Growth and lifelong homeostasis of bone rely on interactions between different cell types including vascular cells and mesenchymal stromal cells (MSCs). As these interactions involve Notch signaling, we have explored whether treatment with secreted Notch ligand proteins can enhance osteogenesis in adult mice. We show that a bone-targeting, high affinity version of the ligand Delta-like 4, termed Dll4(E12), induces bone formation in male mice without causing adverse effects in other organs, which are known to rely on intact Notch signaling. Due to lower bone surface and thereby reduced retention of Dll4(E12), the same approach failed to promote osteogenesis in female and ovariectomized mice but strongly enhanced trabecular bone formation in combination with parathyroid hormone. Single cell analysis of stromal cells indicates that Dll4(E12) primarily acts on MSCs and has comparably minor effects on osteoblasts, endothelial cells, or chondrocytes. We propose that activation of Notch signaling by bone-targeted fusion proteins might be therapeutically useful and can avoid detrimental effects in Notch-dependent processes in other organs.


Asunto(s)
Osteogénesis , Osteoporosis/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Huesos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Condrocitos/metabolismo , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Transducción de Señal
3.
Elife ; 82019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31782728

RESUMEN

The homeostasis of heart and other organs relies on the appropriate provision of nutrients and functional specialization of the local vasculature. Here, we have used mouse genetics, imaging and cell biology approaches to investigate how homeostasis in the adult heart is controlled by endothelial EphB4 and its ligand ephrin-B2, which are known regulators of vascular morphogenesis and arteriovenous differentiation during development. We show that inducible and endothelial cell-specific inactivation of Ephb4 in adult mice is compatible with survival, but leads to rupturing of cardiac capillaries, cardiomyocyte hypertrophy, and pathological cardiac remodeling. In contrast, EphB4 is not required for integrity and homeostasis of capillaries in skeletal muscle. Our analysis of mutant mice and cultured endothelial cells shows that EphB4 controls the function of caveolae, cell-cell adhesion under mechanical stress and lipid transport. We propose that EphB4 maintains critical functional properties of the adult cardiac vasculature and thereby prevents dilated cardiomyopathy-like defects.


Asunto(s)
Endotelio Vascular/crecimiento & desarrollo , Efrina-B2/genética , Corazón/crecimiento & desarrollo , Receptor EphB4/genética , Adulto , Animales , Adhesión Celular/genética , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Homeostasis/genética , Humanos , Ligandos , Ratones , Morfogénesis/genética , Músculo Esquelético/crecimiento & desarrollo , Neovascularización Fisiológica/genética
4.
Nat Cell Biol ; 19(8): 915-927, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714968

RESUMEN

Endothelial sprouting and proliferation are tightly coordinated processes mediating the formation of new blood vessels during physiological and pathological angiogenesis. Endothelial tip cells lead sprouts and are thought to suppress tip-like behaviour in adjacent stalk endothelial cells by activating Notch. Here, we show with genetic experiments in postnatal mice that the level of active Notch signalling is more important than the direct Dll4-mediated cell-cell communication between endothelial cells. We identify endothelial expression of VEGF-A and of the chemokine receptor CXCR4 as key processes controlling Notch-dependent vessel growth. Surprisingly, genetic experiments targeting endothelial tip cells in vivo reveal that they retain their function without Dll4 and are also not replaced by adjacent, Dll4-positive cells. Instead, activation of Notch directs tip-derived endothelial cells into developing arteries and thereby establishes that Dll4-Notch signalling couples sprouting angiogenesis and artery formation.


Asunto(s)
Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica , Receptor Notch1/metabolismo , Arteria Retiniana/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Comunicación Celular , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Genotipo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Receptor Notch1/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Arteria Retiniana/citología , Transducción de Señal , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
PLoS One ; 9(12): e115578, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25525809

RESUMEN

Functional differences between healthy progenitor and cancer initiating cells may provide unique opportunities for targeted therapy approaches. Hematopoietic stem cells are tightly controlled by a network of CDK inhibitors that govern proliferation and prevent stem cell exhaustion. Loss of Inca1 led to an increased number of short-term hematopoietic stem cells in older mice, but Inca1 seems largely dispensable for normal hematopoiesis. On the other hand, Inca1-deficiency enhanced cell cycling upon cytotoxic stress and accelerated bone marrow exhaustion. Moreover, AML1-ETO9a-induced proliferation was not sustained in Inca1-deficient cells in vivo. As a consequence, leukemia induction and leukemia maintenance were severely impaired in Inca1-/- bone marrow cells. The re-initiation of leukemia was also significantly inhibited in absence of Inca1-/- in MLL-AF9- and c-myc/BCL2-positive leukemia mouse models. These findings indicate distinct functional properties of Inca1 in normal hematopoietic cells compared to leukemia initiating cells. Such functional differences might be used to design specific therapy approaches in leukemia.


Asunto(s)
Proteínas Portadoras/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Experimental/patología , Células Madre Neoplásicas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Ciclo Celular , Células Cultivadas , Modelos Animales de Enfermedad , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA