Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-32231152

RESUMEN

Background: Recent work in social network analysis has shown the usefulness of analysing and predicting outcomes from user-generated data in the context of Public Health Surveillance (PHS). Most of the proposals have focused on dealing with static datasets gathered from social networks, which are processed and mined off-line. However, little work has been done on providing a general framework to analyse the highly dynamic data of social networks from a multidimensional perspective. In this paper, we claim that such a framework is crucial for including social data in PHS systems. Methods: We propose a dynamic multidimensional approach to deal with social data streams. In this approach, dynamic dimensions are continuously updated by applying unsupervised text mining methods. More specifically, we analyse the semantics and temporal patterns in posts for identifying relevant events, topics and users. We also define quality metrics to detect relevant user profiles. In this way, the incoming data can be further filtered to cope with the goals of PHS systems. Results: We have evaluated our approach over a long-term stream of Twitter. We show how the proposed quality metrics allow us to filter out the users that are out-of-domain as well as those with low quality in their messages. We also explain how specific user profiles can be identified through their descriptions. Finally, we illustrate how the proposed multidimensional model can be used to identify main events and topics, as well as to analyse their audience and impact. Conclusions: The results show that the proposed dynamic multidimensional model is able to identify relevant events and topics and analyse them from different perspectives, which is especially useful for PHS systems.


Asunto(s)
Minería de Datos , Vigilancia en Salud Pública , Medios de Comunicación Sociales , Red Social
2.
J Biomed Inform ; 58: 1-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386313

RESUMEN

Biomedical knowledge resources (KRs) are mainly expressed in English, and many applications using them suffer from the scarcity of knowledge in non-English languages. The goal of the present work is to take maximum profit from existing multilingual biomedical KRs lexicons to enrich their non-English counterparts. We propose to combine different automatic methods to generate pair-wise language alignments. More specifically, we use two well-known translation methods (GIZA++ and Moses), and we propose a new ad hoc method specially devised for multilingual KRs. Then, resulting alignments are used to transfer semantics between KRs across their languages. Transference quality is ensured by checking the semantic coherence of the generated alignments. Experiments have been carried out over the Spanish, French and German UMLS Metathesaurus counterparts. As a result, the enriched Spanish KR can grow up to 1,514,217 concepts (originally 286,659), the French KR up to 1,104,968 concepts (originally 83,119), and the German KR up to 1,136,020 concepts (originally 86,842).


Asunto(s)
Semántica , Vocabulario Controlado , Algoritmos , Conocimiento
3.
J Biomed Inform ; 57: 204-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26241356

RESUMEN

MOTIVATION: Although full-text articles are provided by the publishers in electronic formats, it remains a challenge to find related work beyond the title and abstract context. Identifying related articles based on their abstract is indeed a good starting point; this process is straightforward and does not consume as many resources as full-text based similarity would require. However, further analyses may require in-depth understanding of the full content. Two articles with highly related abstracts can be substantially different regarding the full content. How similarity differs when considering title-and-abstract versus full-text and which semantic similarity metric provides better results when dealing with full-text articles are the main issues addressed in this manuscript. METHODS: We have benchmarked three similarity metrics - BM25, PMRA, and Cosine, in order to determine which one performs best when using concept-based annotations on full-text documents. We also evaluated variations in similarity values based on title-and-abstract against those relying on full-text. Our test dataset comprises the Genomics track article collection from the 2005 Text Retrieval Conference. Initially, we used an entity recognition software to semantically annotate titles and abstracts as well as full-text with concepts defined in the Unified Medical Language System (UMLS®). For each article, we created a document profile, i.e., a set of identified concepts, term frequency, and inverse document frequency; we then applied various similarity metrics to those document profiles. We considered correlation, precision, recall, and F1 in order to determine which similarity metric performs best with concept-based annotations. For those full-text articles available in PubMed Central Open Access (PMC-OA), we also performed dispersion analyses in order to understand how similarity varies when considering full-text articles. RESULTS: We have found that the PubMed Related Articles similarity metric is the most suitable for full-text articles annotated with UMLS concepts. For similarity values above 0.8, all metrics exhibited an F1 around 0.2 and a recall around 0.1; BM25 showed the highest precision close to 1; in all cases the concept-based metrics performed better than the word-stem-based one. Our experiments show that similarity values vary when considering only title-and-abstract versus full-text similarity. Therefore, analyses based on full-text become useful when a given research requires going beyond title and abstract, particularly regarding connectivity across articles. AVAILABILITY: Visualization available at ljgarcia.github.io/semsim.benchmark/, data available at http://dx.doi.org/10.5281/zenodo.13323.


Asunto(s)
Acceso a la Información , PubMed , Unified Medical Language System , Curaduría de Datos , Humanos , Almacenamiento y Recuperación de la Información , Semántica , Programas Informáticos
4.
J Biomed Inform ; 53: 300-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25510606

RESUMEN

Text mining of scientific literature has been essential for setting up large public biomedical databases, which are being widely used by the research community. In the biomedical domain, the existence of a large number of terminological resources and knowledge bases (KB) has enabled a myriad of machine learning methods for different text mining related tasks. Unfortunately, KBs have not been devised for text mining tasks but for human interpretation, thus performance of KB-based methods is usually lower when compared to supervised machine learning methods. The disadvantage of supervised methods though is they require labeled training data and therefore not useful for large scale biomedical text mining systems. KB-based methods do not have this limitation. In this paper, we describe a novel method to generate word-concept probabilities from a KB, which can serve as a basis for several text mining tasks. This method not only takes into account the underlying patterns within the descriptions contained in the KB but also those in texts available from large unlabeled corpora such as MEDLINE. The parameters of the model have been estimated without training data. Patterns from MEDLINE have been built using MetaMap for entity recognition and related using co-occurrences. The word-concept probabilities were evaluated on the task of word sense disambiguation (WSD). The results showed that our method obtained a higher degree of accuracy than other state-of-the-art approaches when evaluated on the MSH WSD data set. We also evaluated our method on the task of document ranking using MEDLINE citations. These results also showed an increase in performance over existing baseline retrieval approaches.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Semántica , Unified Medical Language System , Algoritmos , Inteligencia Artificial , Bases del Conocimiento , MEDLINE , Modelos Estadísticos , Procesamiento de Lenguaje Natural , Probabilidad
5.
J Biomed Semantics ; 4(1): 12, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23635042

RESUMEN

BACKGROUND: Open metadata registries are a fundamental tool for researchers in the Life Sciences trying to locate resources. While most current registries assume that resources are annotated with well-structured metadata, evidence shows that most of the resource annotations simply consists of informal free text. This reality must be taken into account in order to develop effective techniques for resource discovery in Life Sciences. RESULTS: BioUSeR is a semantic-based tool aimed at retrieving Life Sciences resources described in free text. The retrieval process is driven by the user requirements, which consist of a target task and a set of facets of interest, both expressed in free text. BioUSeR is able to effectively exploit the available textual descriptions to find relevant resources by using semantic-aware techniques. CONCLUSIONS: BioUSeR overcomes the limitations of the current registries thanks to: (i) rich specification of user information needs, (ii) use of semantics to manage textual descriptions, (iii) retrieval and ranking of resources based on user requirements.

6.
BMC Bioinformatics ; 13 Suppl 1: S6, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22373409

RESUMEN

BACKGROUND: The semantic integration of biomedical resources is still a challenging issue which is required for effective information processing and data analysis. The availability of comprehensive knowledge resources such as biomedical ontologies and integrated thesauri greatly facilitates this integration effort by means of semantic annotation, which allows disparate data formats and contents to be expressed under a common semantic space. In this paper, we propose a multidimensional representation for such a semantic space, where dimensions regard the different perspectives in biomedical research (e.g., population, disease, anatomy and protein/genes). RESULTS: This paper presents a novel method for building multidimensional semantic spaces from semantically annotated biomedical data collections. This method consists of two main processes: knowledge and data normalization. The former one arranges the concepts provided by a reference knowledge resource (e.g., biomedical ontologies and thesauri) into a set of hierarchical dimensions for analysis purposes. The latter one reduces the annotation set associated to each collection item into a set of points of the multidimensional space. Additionally, we have developed a visual tool, called 3D-Browser, which implements OLAP-like operators over the generated multidimensional space. The method and the tool have been tested and evaluated in the context of the Health-e-Child (HeC) project. Automatic semantic annotation was applied to tag three collections of abstracts taken from PubMed, one for each target disease of the project, the Uniprot database, and the HeC patient record database. We adopted the UMLS Meta-thesaurus 2010AA as the reference knowledge resource. CONCLUSIONS: Current knowledge resources and semantic-aware technology make possible the integration of biomedical resources. Such an integration is performed through semantic annotation of the intended biomedical data resources. This paper shows how these annotations can be exploited for integration, exploration, and analysis tasks. Results over a real scenario demonstrate the viability and usefulness of the approach, as well as the quality of the generated multidimensional semantic spaces.


Asunto(s)
Investigación Biomédica , Biología Computacional/métodos , Semántica , Ontologías Biológicas , Gráficos por Computador , Recolección de Datos , Bases de Datos Factuales , Humanos , PubMed
7.
J Biomed Semantics ; 2 Suppl 5: S11, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-22166494

RESUMEN

BACKGROUND: Competitions in text mining have been used to measure the performance of automatic text processing solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-consuming and costly and the final corpus consists at the most of a few thousand documents annotated with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) have produced a large-scale annotated biomedical corpus with four different semantic groups through the harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard Corpus (SSC-I). The four semantic groups are chemical entities and drugs (CHED), genes and proteins (PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC Challenge asking the participants to annotate the corpus with their text processing solutions. RESULTS: All four PPs from the CALBC project and in addition, 12 challenge participants (CPs) contributed annotated data sets for an evaluation against the SSC-I. CPs could ignore the training data and deliver the annotations from their genuine annotation system, or could train a machine-learning approach on the provided pre-annotated data. In general, the performances of the annotation solutions were lower for entities from the categories CHED and PRGE in comparison to the identification of entities categorized as DISO and SPE. The best performance over all semantic groups were achieved from two annotation solutions that have been trained on the SSC-I.The data sets from participants were used to generate the harmonised Silver Standard Corpus II (SSC-II), if the participant did not make use of the annotated data set from the SSC-I for training purposes. The performances of the participants' solutions were again measured against the SSC-II. The performances of the annotation solutions showed again better results for DISO and SPE in comparison to CHED and PRGE. CONCLUSIONS: The SSC-I delivers a large set of annotations (1,121,705) for a large number of documents (100,000 Medline abstracts). The annotations cover four different semantic groups and are sufficiently homogeneous to be reproduced with a trained classifier leading to an average F-measure of 85%. Benchmarking the annotation solutions against the SSC-II leads to better performance for the CPs' annotation solutions in comparison to the SSC-I.

8.
J Biomed Semantics ; 2 Suppl 1: S2, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21388571

RESUMEN

BACKGROUND: The UMLS Metathesaurus (UMLS-Meta) is currently the most comprehensive effort for integrating independently-developed medical thesauri and ontologies. UMLS-Meta is being used in many applications, including PubMed and ClinicalTrials.gov. The integration of new sources combines automatic techniques, expert assessment, and auditing protocols. The automatic techniques currently in use, however, are mostly based on lexical algorithms and often disregard the semantics of the sources being integrated. RESULTS: In this paper, we argue that UMLS-Meta's current design and auditing methodologies could be significantly enhanced by taking into account the logic-based semantics of the ontology sources. We provide empirical evidence suggesting that UMLS-Meta in its 2009AA version contains a significant number of errors; these errors become immediately apparent if the rich semantics of the ontology sources is taken into account, manifesting themselves as unintended logical consequences that follow from the ontology sources together with the information in UMLS-Meta. We then propose general principles and specific logic-based techniques to effectively detect and repair such errors. CONCLUSIONS: Our results suggest that the methodologies employed in the design of UMLS-Meta are not only very costly in terms of human effort, but also error-prone. The techniques presented here can be useful for both reducing human effort in the design and maintenance of UMLS-Meta and improving the quality of its contents.

9.
BMC Bioinformatics ; 9 Suppl 3: S3, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18426548

RESUMEN

BACKGROUND: In recent years, the recognition of semantic types from the biomedical scientific literature has been focused on named entities like protein and gene names (PGNs) and gene ontology terms (GO terms). Other semantic types like diseases have not received the same level of attention. Different solutions have been proposed to identify disease named entities in the scientific literature. While matching the terminology with language patterns suffers from low recall (e.g., Whatizit) other solutions make use of morpho-syntactic features to better cover the full scope of terminological variability (e.g., MetaMap). Currently, MetaMap that is provided from the National Library of Medicine (NLM) is the state of the art solution for the annotation of concepts from UMLS (Unified Medical Language System) in the literature. Nonetheless, its performance has not yet been assessed on an annotated corpus. In addition, little effort has been invested so far to generate an annotated dataset that links disease entities in text to disease entries in a database, thesaurus or ontology and that could serve as a gold standard to benchmark text mining solutions. RESULTS: As part of our research work, we have taken a corpus that has been delivered in the past for the identification of associations of genes to diseases based on the UMLS Metathesaurus and we have reprocessed and re-annotated the corpus. We have gathered annotations for disease entities from two curators, analyzed their disagreement (0.51 in the kappa-statistic) and composed a single annotated corpus for public use. Thereafter, three solutions for disease named entity recognition including MetaMap have been applied to the corpus to automatically annotate it with UMLS Metathesaurus concepts. The resulting annotations have been benchmarked to compare their performance. CONCLUSIONS: The annotated corpus is publicly available at ftp://ftp.ebi.ac.uk/pub/software/textmining/corpora/diseases and can serve as a benchmark to other systems. In addition, we found that dictionary look-up already provides competitive results indicating that the use of disease terminology is highly standardized throughout the terminologies and the literature. MetaMap generates precise results at the expense of insufficient recall while our statistical method obtains better recall at a lower precision rate. Even better results in terms of precision are achieved by combining at least two of the three methods leading, but this approach again lowers recall. Altogether, our analysis gives a better understanding of the complexity of disease annotations in the literature. MetaMap and the dictionary based approach are available through the Whatizit web service infrastructure (Rebholz-Schuhmann D, Arregui M, Gaudan S, Kirsch H, Jimeno A: Text processing through Web services: Calling Whatizit. Bioinformatics 2008, 24:296-298).


Asunto(s)
Algoritmos , Inteligencia Artificial , Enfermedad/clasificación , Procesamiento de Lenguaje Natural , Reconocimiento de Normas Patrones Automatizadas/métodos , Terminología como Asunto , Unified Medical Language System , Diccionarios como Asunto , Semántica , Vocabulario Controlado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA