RESUMEN
The impact of global warming on Argentine viticulture may result in a geographical shift, with wine-growing regions potentially moving towards the southwest, known as one of the windiest regions in the world. Deficit irrigation is a widely used strategy to control the shoot growth and improve fruit quality attributes, such as berry skin polyphenols. The present study aimed to assess the effects of different wind intensities and irrigation levels, as well as their interactions, on field-grown Vitis vinifera L. cvs. Malbec and Cabernet Sauvignon. The experiment was conducted during two growing seasons with two wind treatments (sheltered and exposed) and two irrigation treatments (well-watered and moderate deficit irrigation) in a multifactorial design. Vegetative growth, stomatal conductance, shoot biomass partition, fruit yield components and berry skin phenolics were evaluated. Our study found that, generally, wind exposure reduced vegetative growth, and deficit irrigation increased the proportion of smaller berries within the bunches. Meanwhile, deficit irrigation and wind exposure additively increased the concentration of berry skin phenolics. Combined stressful conditions enhance biomass partition across the shoot to fruits in Malbec, increasing the weight of bunches and the number of berries. Our findings offer practical implications for vineyard managers in windy regions, providing actionable insights to optimize grapevine cultivation and enhance wine quality.
RESUMEN
BACKGROUND: The gibberellins (GAs) GA5 (inhibitor of GA3 -oxidase), GA4 (biologically active), GA4/7 (commercially available mixture of Ga4 and GA7 ) prohexadione-calcium (ProCa, inhibitor of dioxygenases that render GAs bioactive, negative control), and GA3 (positive control) were applied to bunches of Vitis vinifera cv. Malbec. Different techniques, doses, and timings were used in a 3-year field experiment. In year 1, GA5 , ProCa, and GA3 were applied at 35, 20, and 0 days before veraison (DBV) by dipping bunches three times. In year 2, single applications of GA5 and GA3 , also by immersion, were tested at 60, 45, and 30 DBV. In year 3, applications at 60 and 30 DBV of GA5 , GA4 , and a mixture of GA4/7 were evaluated by dipping or spraying the bunches. RESULTS: Vegetative growth, berry weight, and sugar content were unaffected by treatments. ProCa did not affect the yield with respect to water control, although it reduced the levels of phenolics in berry skins, an undesirable effect for winemaking. GA5 , in the dose range 5-50 mg L-1 , raised berry numbers, thereby augmenting bunch weight and skin phenolics at harvest, so increasing berry quality for winemaking. GA4 and GA4/7 produced similar benefits to GA5 , with similar doses. CONCLUSION: The applications of GA5 , GA4 , and GA4/7 to developing grape berry bunches, in a range of concentrations and by dipping or spraying, increased berry numbers per bunch at harvest. The method can be used as a viticultural practice to improve the production and quality of wine grapes. © 2021 Society of Chemical Industry.
Asunto(s)
Vitis , Carbohidratos/análisis , Frutas/química , Giberelinas/farmacología , Fenoles/análisis , Vitis/químicaRESUMEN
Abscisic acid (ABA) plays a crucial role in the plant responses to environmental signals, in particular by triggering secondary metabolism. High-altitude vineyards in Mendoza, Argentina, are exposed to elevated solar ultraviolet-B (UV-B) levels and moderate water deficits (WD), thus producing grapevine berries with high enological quality for red winemaking. Volatile organic compounds (VOCs) and phenolic compounds (PCs) accumulate in the berry skins, possess antioxidant activity, and are important attributes for red wine. The aim of the present study was to analyze the role of ABA in the modulation of these compounds in Vitis vinifera L. cv. Malbec wines by comparing the independent and interactive effects of UV-B, WD, and ABA. Two UV-B treatments (ambient solar UV-B or reduced UV-B), two watering treatments (well-watered or moderate water deficit) and two ABA treatments (no ABA and sprayed ABA) were given in a factorial design during one growing season. Sprayed ABA, alone and/or in combination with UV-B (specially) and WD (to a lower degree) increased low molecular weight polyphenols (LMWP), anthocyanins, but most noticeably the stilbenes trans-resveratrol and piceid. Under these treatments, VOCs were scarcely affected, and the antioxidant capacity was influenced by the combination of UV-B and WD. From a technological point of view, ABA applications may be an effective vineyard management tool, considering that it elicited a higher content of compounds beneficial for wine aging, as well compounds related to color.
RESUMEN
KEY MESSAGE: By studying three cv. Malbec clones cultivated in two vineyards with contrasting environmental conditions, we demonstrated that DNA methylation has an important role in the phenotypic plasticity and that epigenetic modulation is clone-dependent. Clonal selection and vegetative propagation determine low genetic variability in grapevine cultivars, although it is common to observe diverse phenotypes. Environmental signals may induce epigenetic changes altering gene expression and phenotype. The range of phenotypes that a genotype expresses in different environments is known as phenotypic plasticity. DNA methylation is the most studied epigenetic mechanism, but only few works evaluated this novel source of variability in grapevines. In the present study, we analyzed the effects on phenotypic traits and epigenome of three Vitis vinifera cv. Malbec clones cultivated in two contrasting vineyards of Mendoza, Argentina. Anonymous genome regions were analyzed using methylation-sensitive amplified polymorphism (MSAP) markers. Clone-dependent phenotypic and epigenetic variability between vineyards were found. The clone that presented the clearer MSAP differentiation between vineyards was selected and analyzed through reduced representation bisulfite sequencing. Twenty-nine differentially methylated regions between vineyards were identified and associated to genes and/or promoters. We discuss about a group of genes related to hormones homeostasis and sensing that could provide a hint of the epigenetic role in the determination of the different phenotypes observed between vineyards and conclude that DNA methylation has an important role in the phenotypic plasticity and that epigenetic modulation is clone-dependent.
Asunto(s)
Metilación de ADN , Polimorfismo Genético , Vitis/fisiología , Argentina , Epigénesis Genética , Granjas , Interacción Gen-Ambiente , Fenotipo , Regiones Promotoras Genéticas , Vitis/genéticaRESUMEN
Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.
Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/microbiología , Azospirillum brasilense/fisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/análisis , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomasa , Clorofila/metabolismo , Sequías , Flores/genética , Flores/microbiología , Flores/fisiología , Peroxidación de Lípido , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/análisis , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Transpiración de Plantas/fisiología , Prolina/metabolismo , Plantones/genética , Plantones/microbiología , Plantones/fisiología , Semillas/genética , Semillas/microbiología , Semillas/fisiología , Agua/fisiologíaRESUMEN
We previously demonstrated that solar ultraviolet-B (UV-B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV-B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV-B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV-B (+UV-B) and reduced (by filtering) UV-B (-UV-B) treatments during three consecutive seasons, and the effects of UV-B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV-B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV-B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV-B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV-B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.
Asunto(s)
Vitis/crecimiento & desarrollo , Vitis/metabolismo , Altitud , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Peroxidación de Lípido , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas , Prolina/metabolismo , Luz Solar , Rayos Ultravioleta , Vitis/efectos de la radiaciónRESUMEN
It has been previously found that abscisic acid (ABA) participates in the activation of grapevine leaf tissue defense against potentially damaging effects of solar ultraviolet-B radiation (UV-B), apparently by triggering biosynthesis of phenols that filter the harmful radiation and act as antioxidants. The present work studies the effect of solar UV-B and exogenously applied ABA on berry growth, sugar accumulation, and phenol (anthocyanin and nonanthocyanin) profiles across berry development and ripening of Vitis vinifera L. cv. Malbec in a vineyard at 1450 m of altitude. The grapevines were exposed to relatively high UV-B irradiation (normal sunlight; +UV-B) and also to a reduced UV-B treatment (filter exclusion; -UV-B). These two UV-B treatments were combined with weekly spray applications to the leaves and berries of 1 mM ABA (+ABA) or H(2)O (-ABA). Reduction of UV-B delayed berry development and maturation, whereas the +UV-B and +ABA combined treatment hastened berry sugar and phenol accumulation. +UV-B/+ABA treatments also reduced berry growth and decreased sugar per berry without affecting sugar concentration (°Brix) at harvest. Berry skin ABA levels were higher in the +UV-B and +ABA combined treatment, which also hastened the onset of ripening up to 20 days. Berry skin ABA levels then decreased toward harvest, implying a possible role for ABA in the control of ripening in this nonclimacteric fruit. Under both +UV-B and +ABA treatments berry skin phenols were additively increased with a change in anthocyanin and nonanthocyanin profiles and increases in the proportion of phenols with high antioxidant capacity.
Asunto(s)
Ácido Abscísico/metabolismo , Flavonoides/biosíntesis , Vitis/metabolismo , Vitis/efectos de la radiación , Frutas/metabolismo , Frutas/efectos de la radiación , Fenoles , Polifenoles , Rayos Ultravioleta , Vitis/crecimiento & desarrolloRESUMEN
We investigated the interactions of abscisic acid (ABA) in the responses of grape leaf tissues to contrasting ultraviolet (UV)-B treatments. One-year-old field-grown plants of Vitis vinifera L. were exposed to photosynthetically active radiation (PAR) where solar UV-B was eliminated by using polyester filters, or where PAR was supplemented with UV-B irradiation. Treatments combinations included weekly foliar sprays of ABA or a water control. The levels of UV-B absorbing flavonols, quercetin and kaempferol were significantly decreased by filtering out UV-B, while applied ABA increased their content. Concentration of two hydroxycinnamic acids, caffeic and ferulic acids, were also increased by ABA, but not affected by plus UV-B (+UV-B) treatments. Levels of carotenoids and activities of the antioxidant enzymes, catalase, ascorbate peroxidase and peroxidase were elevated by +ABA treatments, but only if +UV-B was given. Cell membrane beta-sitosterol was enhanced by ABA independently of +UV-B. Changes in photoprotective compounds, antioxidant enzymatic activities and sterols were correlated with lessened membrane harm by UV-B, as assessed by ion leakage. Oxidative damage expressed as malondialdehyde content was increased under +UV-B treatments. Our results suggest that the defence system of grape leaf tissues against UV-B is activated by UV-B irradiation with ABA acting downstream in the signalling pathway.