Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
EMBO J ; 43(7): 1135-1163, 2024 Apr.
Article En | MEDLINE | ID: mdl-38418557

Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here, we uncover the role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.


COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , Complement System Proteins , Inflammation , Immunity, Innate
2.
PLoS Pathog ; 19(10): e1011735, 2023 Oct.
Article En | MEDLINE | ID: mdl-37844099

SARS-CoV-2 causes COVID-19, an infectious disease with symptoms ranging from a mild cold to severe pneumonia, inflammation, and even death. Although strong inflammatory responses are a major factor in causing morbidity and mortality, superinfections with bacteria during severe COVID-19 often cause pneumonia, bacteremia and sepsis. Aberrant immune responses might underlie increased sensitivity to bacteria during COVID-19 but the mechanisms remain unclear. Here we investigated whether SARS-CoV-2 directly suppresses immune responses to bacteria. We studied the functionality of human dendritic cells (DCs) towards a variety of bacterial triggers after exposure to SARS-CoV-2 Spike (S) protein and SARS-CoV-2 primary isolate (hCoV-19/Italy). Notably, pre-exposure of DCs to either SARS-CoV-2 S protein or a SARS-CoV-2 isolate led to reduced type I interferon (IFN) and cytokine responses in response to Toll-like receptor (TLR)4 agonist lipopolysaccharide (LPS), whereas other TLR agonists were not affected. SARS-CoV-2 S protein interacted with the C-type lectin receptor DC-SIGN and, notably, blocking DC-SIGN with antibodies restored type I IFN and cytokine responses to LPS. Moreover, blocking the kinase Raf-1 by a small molecule inhibitor restored immune responses to LPS. These results suggest that SARS-CoV-2 modulates DC function upon TLR4 triggering via DC-SIGN-induced Raf-1 pathway. These data imply that SARS-CoV-2 actively suppresses DC function via DC-SIGN, which might account for the higher mortality rates observed in patients with COVID-19 and bacterial superinfections.


COVID-19 , Superinfection , Humans , SARS-CoV-2/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , COVID-19/metabolism , Lectins, C-Type/metabolism , Cytokines/metabolism , Dendritic Cells
3.
mBio ; 13(6): e0255822, 2022 12 20.
Article En | MEDLINE | ID: mdl-36326251

New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple prophylactic agent to prevent infection. Low molecular weight heparins (LMWH) are potent inhibitors of SARS-CoV-2 binding and infection in vitro. The airways are a major route for infection and therefore inhaled LMWH could be a prophylactic treatment against SARS-CoV-2. We investigated the efficacy of in vivo inhalation of LMWH in humans to prevent SARS-CoV-2 attachment to nasal epithelial cells in a single-center, open-label intervention study. Volunteers received enoxaparin in the right and a placebo (NaCl 0.9%) in the left nostril using a nebulizer. After application, nasal epithelial cells were retrieved with a brush for ex-vivo exposure to either SARS-CoV-2 pseudovirus or an authentic SARS-CoV-2 isolate and virus attachment as determined. LMWH inhalation significantly reduced attachment of SARS-CoV-2 pseudovirus as well as authentic SARS-CoV-2 to human nasal cells. Moreover, in vivo inhalation was as efficient as in vitro LMWH application. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the study participants. Our data strongly suggested that inhalation of LMWH was effective to prevent SARS-CoV-2 attachment and subsequent infection. LMWH is ubiquitously available, affordable, and easy to apply, making them suitable candidates for prophylactic treatment against SARS-CoV-2. IMPORTANCE New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple agent to prevent infection. Low molecular weight heparins (LMWH) have been shown to inhibit SARS-CoV-2 in experimental settings. The airways are a major route for SARS-CoV-2 infection and inhaled LMWH could be a prophylactic treatment. We investigated the efficacy of inhalation of the LMWH enoxaparin in humans to prevent SARS-CoV-2 attachment because this is a prerequisite for infection. Volunteers received enoxaparin in the right and a placebo in the left nostril using a nebulizer. Subsequently, nasal epithelial cells were retrieved with a brush and exposed to SARS-CoV-2. LMWH inhalation significantly reduced the binding of SARS-Cov-2 to human nasal cells. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the participants. Our data indicated that LMWH can be used to block SARS-CoV-2 attachment to nasal cells. LMWH was ubiquitously available, affordable, and easily applicable, making them excellent candidates for prophylactic treatment against SARS-CoV-2.


COVID-19 , Heparin, Low-Molecular-Weight , Humans , Heparin, Low-Molecular-Weight/adverse effects , SARS-CoV-2 , Enoxaparin/therapeutic use
4.
Eur J Immunol ; 52(4): 646-655, 2022 04.
Article En | MEDLINE | ID: mdl-35099061

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potentially multiorgan dysfunction. It remains unclear how SARS-CoV-2 infection leads to immune activation. The Spike (S) protein of SARS-CoV-2 has been suggested to trigger TLR4 and thereby activate immunity. Here, we have investigated the role of TLR4 in SARS-CoV-2 infection and immunity. Neither exposure of isolated S protein, SARS-CoV-2 pseudovirus nor primary SARS-CoV-2 isolate induced TLR4 activation in a TLR4-expressing cell line. Human monocyte-derived DCs express TLR4 but not angiotensin converting enzyme 2 (ACE2), and DCs were not infected by SARS-CoV-2. Notably, neither S protein nor SARS-CoV-2 induced DC maturation or cytokines, indicating that both S protein and SARS-CoV-2 virus particles do not trigger extracellular TLRs including TLR4. Ectopic expression of ACE2 in DCs led to efficient infection by SARS-CoV-2 and, strikingly, efficient type I IFN and cytokine responses. These data strongly suggest that not extracellular TLRs but intracellular viral sensors are key players in sensing SARS-CoV-2. These data imply that SARS-CoV-2 escapes direct sensing by TLRs, which might underlie the lack of efficient immunity to SARS-CoV-2 early during infection.


COVID-19 , Dendritic Cells , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4 , COVID-19/immunology , Cell Line , Dendritic Cells/immunology , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Toll-Like Receptor 4/immunology
5.
mBio ; 12(5): e0240821, 2021 10 26.
Article En | MEDLINE | ID: mdl-34634939

Complement-opsonized HIV-1 triggers efficient antiviral type I interferon (IFN) responses in dendritic cells (DCs), which play an important role in protective responses at the earliest stages in retroviral infection. In contrast, HIV-1 suppresses or escapes sensing by STING- and MAVS-associated sensors. Here, we identified a complement receptor-mediated sensing pathway, where DCs are activated in CCR5/RLR (RIG-I/MDA5)/MAVS/TBK1-dependent fashion. Increased fusion of complement-opsonized HIV-1 via complement receptor 4 and CCR5 leads to increased incoming HIV-1 RNA in the cytoplasm, sensed by a nonredundant cooperative effect of RIG-I and MDA5. Moreover, complement-opsonized HIV-1 down-modulated the MAVS-suppressive Raf-1/PLK1 pathway, thereby opening the antiviral recognition pathway via MAVS. This in turn was followed by MAVS aggregation and subsequent TBK1/IRF3/NF-κB activation in DCs exposed to complement- but not non-opsonized HIV-1. Our data strongly suggest that complement is important in the induction of efficient antiviral immune responses by preventing HIV-1 suppressive mechanisms as well as inducing specific cytosolic sensors. IMPORTANCE Importantly, our study highlights an unusual target on DCs-the α chain of complement receptor 4 (CR4) (CD11c)-for therapeutic interventions in HIV-1 treatment. Targeting CD11c on DCs mediated a potent antiviral immune response via clustering of CR4 and CCR5 and subsequent opening of an antiviral recognition pathway in DCs via MAVS. This novel finding might provide novel tools for specifically boosting endogenous antiviral immunity via CR4, abundantly expressed on multiple DC subsets.


Complement System Proteins/immunology , HIV Infections/immunology , HIV-1/immunology , Interferon Type I/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Humans , Integrin alphaXbeta2/genetics , Integrin alphaXbeta2/immunology , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Receptors, CCR5/genetics , Receptors, CCR5/immunology
6.
EMBO J ; 40(20): e106765, 2021 10 18.
Article En | MEDLINE | ID: mdl-34510494

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.


COVID-19/transmission , Heparan Sulfate Proteoglycans/metabolism , Heparin, Low-Molecular-Weight/pharmacology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Chlorocebus aethiops , Dendritic Cells/metabolism , Dendritic Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , Mucous Membrane/cytology , Mucous Membrane/virology , SARS-CoV-2/metabolism , Syndecan-1/metabolism , Syndecan-4/metabolism , Vero Cells , COVID-19 Drug Treatment
7.
Mucosal Immunol ; 14(3): 743-750, 2021 05.
Article En | MEDLINE | ID: mdl-33568786

Semen is important in determining HIV-1 susceptibility but it is unclear how it affects virus transmission during sexual contact. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 during sexual contact and have a barrier function as LCs are restrictive to HIV-1. As semen from people living with HIV-1 contains complement-opsonized HIV-1, we investigated the effect of complement on HIV-1 dissemination by human LCs in vitro and ex vivo. Notably, pre-treatment of HIV-1 with semen enhanced LC infection compared to untreated HIV-1 in the ex vivo explant model. Infection of LCs and transmission to target cells by opsonized HIV-1 was efficiently inhibited by blocking complement receptors CR3 and CR4. Complement opsonization of HIV-1 enhanced uptake, fusion, and integration by LCs leading to an increased transmission of HIV-1 to target cells. However, in the absence of both CR3 and CR4, C-type lectin receptor langerin was able to restrict infection of complement-opsonized HIV-1. These data suggest that complement enhances HIV-1 infection of LCs by binding CR3 and CR4, thereby bypassing langerin and changing the restrictive nature of LCs into virus-disseminating cells. Targeting complement factors might be effective in preventing HIV-1 transmission.


HIV Infections/immunology , HIV-1/physiology , Langerhans Cells/immunology , Semen/immunology , Antibodies, Blocking/metabolism , Antigens, CD/metabolism , Cell Line , Complement Activation , Disease Transmission, Infectious , HIV Infections/transmission , HIV-1/pathogenicity , Host-Parasite Interactions , Humans , Immune Evasion , Integrin alphaXbeta2/metabolism , Lectins, C-Type/metabolism , Macrophage-1 Antigen/metabolism , Mannose-Binding Lectins/metabolism , Opsonization , Semen/virology
8.
Front Immunol ; 11: 572114, 2020.
Article En | MEDLINE | ID: mdl-33224139

Upon entry of human immunodeficiency virus 1 (HIV-1) into the host, innate immune mechanisms are acting as a first line of defense, that considerably also modify adaptive immunity by the provision of specific signals. Innate and adaptive immune responses are intimately linked and dendritic cells (DCs) together with complement (C) play an important role in regulation of adaptive immunity. Initially, the role of complement was considered to primarily support - or COMPLEMENT - cytolytic actions of antibodies or antibody-complexed antigens (immune complexes, ICs) or directly kill the pathogens by complement-mediated lysis. Recently, the role of complement was revised and found to significantly augmenting and modulating adaptive immunity, in particular against viruses. Complement and DCs are therefore predestined to open novel avenues for antiviral research and potential therapeutic interventions. Recent studies on interactions of complement-opsonized HIV-1 with DCs demonstrated a high potential of such primed DCs to initiate efficient antiviral and cytotoxic anti-HIV-1 immunity and complement-coated viral particles shift DCs functions via CR3 and CR4 in an antithetic manner. This review will focus on our current knowledge of CR3 and CR4 actions on DCs during HIV-1 binding and the outcome of infection influenced by entry and signaling pathways.


Dendritic Cells/immunology , HIV Infections/metabolism , HIV-1/physiology , Macrophage-1 Antigen/metabolism , Animals , Antigen Presentation , Antigens, Viral/immunology , Complement System Proteins/metabolism , Cytotoxicity, Immunologic , HIV Infections/immunology , Humans , Immunity , Integrin alphaXbeta2 , Signal Transduction , Virus Internalization
9.
Front Immunol ; 11: 2010, 2020.
Article En | MEDLINE | ID: mdl-32922405

Dendritic cells (DCs) possess intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. In turn, HIV-1 has evolved strategies to evade innate immune sensing by DCs resulting in suboptimal maturation and poor antiviral immune responses. We previously showed that complement-opsonized HIV-1 (HIV-C) was able to efficiently infect various DC subsets significantly higher than non-opsonized HIV-1 (HIV) and therefore also mediate a higher antiviral immunity. Thus, complement coating of HIV-1 might play a role with respect to viral control occurring early during infection via modulation of DCs. To determine in detail which complement receptors (CRs) expressed on DCs was responsible for infection and superior pro-inflammatory and antiviral effects, we generated stable deletion mutants for the α-chains of CR3, CD11b, and CR4, CD11c using CRISPR/Cas9 in THP1-derived DCs. We found that CD11c deletion resulted in impaired DC infection as well as antiviral and pro-inflammatory immunity upon exposure to complement-coated HIV-1. In contrast, sole expression of CD11b on DCs shifted the cells to an anti-inflammatory, regulatory DC type. We here illustrated that CR4 comprised of CD11c and CD18 is the major player with respect to DC infection associated with a potent early pro-inflammatory immune response. A more detailed characterization of CR3 and CR4 functions using our powerful tool might open novel avenues for early therapeutic intervention during HIV-1 infection.


Dendritic Cells/immunology , HIV Infections/immunology , HIV-1/physiology , Integrin alphaXbeta2/metabolism , Macrophage-1 Antigen/metabolism , CD11b Antigen/genetics , CD11c Antigen/genetics , CD18 Antigens/genetics , CRISPR-Cas Systems , Complement System Proteins/metabolism , Humans , Immunity , Integrin alphaXbeta2/genetics , Macrophage-1 Antigen/genetics , Sequence Deletion/genetics , Signal Transduction , THP-1 Cells
10.
Virulence ; 10(1): 957-969, 2019 12.
Article En | MEDLINE | ID: mdl-30372658

Complement system and dendritic cells (DCs) form - beside neutrophils and macrophages - the first line of defense to combat fungal infections. Therefore, we here studied interactions of these first immune elements with Aspergillus fumigatus lacking ß-1,3-glucans (fks1tetOnrep under repressed conditions) to mechanistically explain the mode of action of echinocandins in more detail. Echinocandins are cell wall active agents blocking ß-glucan synthase, making the A. fumigatus fks1tetOn mutant a good model to study immune-modulatory actions of these drugs. We now demonstrate herein, that complement was activated to significantly higher levels by the fks1-deficient strain compared to its respective wild type. This enhanced covalent linking of complement fragments to the A. fumigatus fks1tetOnrep mutant further resulted in enhanced DC binding and internalization of the fungus. Additionally, we found that fks1tetOnrep induced a Th1-/Th17-polarizing cytokine profile program in DCs. The effect was essentially dependent on massive galactomannan shedding, since blocking of DC-SIGN significantly reduced the fks1tetOnrep-mediated induction of an inflammatory cytokine profile.Our data demonstrate that lack of ß-1,3-glucan, also found under echinocandin therapy, results in improved recognition of Aspergillus fumigatus by complement and DCs and therefore not only directly affects the fungus by its fungistatic actions, but also is likely to exert indirect antifungal mechanisms by strengthening innate host immune mechanisms.Abbreviations: C: complement; CR:complement receptor; DC: dendritic cell; iDC: immature dendritic cell; DC-SIGN: Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; ERK: extracellular signal-regulated kinases; JNK : c-Jun N-terminal kinases; MAPK: mitogen-activated protein kinase; NHS: normal human serum; PRR: pattern recognition receptor; Th :T helper; TLR :Toll-like receptor; WT: wild type.


Aspergillus fumigatus/chemistry , Aspergillus fumigatus/immunology , Complement Activation , Dendritic Cells/immunology , beta-Glucans , Aspergillosis/microbiology , Aspergillus fumigatus/genetics , Cytokines/immunology , Echinocandins/therapeutic use , Humans , Immunity, Innate , Mutation , Spores, Fungal/immunology , THP-1 Cells
11.
Front Immunol ; 9: 590, 2018.
Article En | MEDLINE | ID: mdl-29632536

C-type lectin receptors (CLRs) are important pattern recognition receptors involved in recognition and induction of adaptive immunity to pathogens. Certain CLRs play an important role in viral infections as they efficiently interact with viruses. However, it has become clear that deadly viruses subvert the function of CLRs to escape antiviral immunity and promote infection. In particular, viruses target CLRs to suppress or modulate type I interferons that play a central role in the innate and adaptive defense against viruses. In this review, we discuss the function of CLRs in binding to enveloped viruses like HIV-1 and Dengue virus, and how uptake and signaling cascades have decisive effects on the outcome of infection.


Host-Pathogen Interactions/immunology , Lectins, C-Type/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Viruses/immunology , Adaptive Immunity , Animals , Antigen Presentation/immunology , Cell Communication/immunology , Humans , Immunity, Innate , Lymphocyte Activation/immunology , Lysosomes/immunology , Lysosomes/metabolism , Receptors, Complement/metabolism , Receptors, Pattern Recognition/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Virus Diseases/transmission , Virus Diseases/virology
...