Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1008, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794132

RESUMEN

Phagosome maturation is critical for immune defense, defining whether ingested material is destroyed or converted into antigens. Sec22b regulates phagosome maturation, yet how has remained unclear. Here we show Sec22b tethers endoplasmic reticulum-phagosome membrane contact sites (MCS) independently of the known tether STIM1. Sec22b knockdown increases calcium signaling, phagolysosome fusion and antigen degradation and alters phagosomal phospholipids PI(3)P, PS and PI(4)P. Levels of PI(4)P, a lysosome docking lipid, are rescued by Sec22b re-expression and by expression of the artificial tether MAPPER but not the MCS-disrupting mutant Sec22b-P33. Moreover, Sec22b co-precipitates with the PS/PI(4)P exchange protein ORP8. Wild-type, but not mutant ORP8 rescues phagosomal PI(4)P and reduces antigen degradation. Sec22b, MAPPER and ORP8 but not P33 or mutant-ORP8 restores phagolysosome fusion in knockdown cells. These findings clarify an alternative mechanism through which Sec22b controls phagosome maturation and beg a reassessment of the relative contribution of Sec22b-mediated fusion versus tethering to phagosome biology.


Asunto(s)
Fagocitosis , Fagosomas , Fagosomas/metabolismo , Fagocitosis/fisiología , Retículo Endoplásmico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
2.
Redox Biol ; 64: 102759, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37302345

RESUMEN

Regulation of mitochondrial redox balance is emerging as a key event for cell signaling in both physiological and pathological conditions. However, the link between the mitochondrial redox state and the modulation of these conditions remains poorly defined. Here, we discovered that activation of the evolutionary conserved mitochondrial calcium uniporter (MCU) modulates mitochondrial redox state. By using mitochondria-targeted redox and calcium sensors and genetic MCU-ablated models, we provide evidence of the causality between MCU activation and net reduction of mitochondrial (but not cytosolic) redox state. Redox modulation of redox-sensitive groups via MCU stimulation is required for maintaining respiratory capacity in primary human myotubes and C. elegans, and boosts mobility in worms. The same benefits are obtained bypassing MCU via direct pharmacological reduction of mitochondrial proteins. Collectively, our results demonstrate that MCU regulates mitochondria redox balance and that this process is required to promote the MCU-dependent effects on mitochondrial respiration and mobility.


Asunto(s)
Caenorhabditis elegans , Mitocondrias , Animales , Humanos , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Respiración
3.
Nutrients ; 12(2)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093050

RESUMEN

Pancreatic ß-cells secrete insulin to lower blood glucose, following a meal. Maintenance of ß-cell function is essential to preventing type 2 diabetes. In pancreatic ß-cells, mitochondrial matrix calcium is an activating signal for insulin secretion. Recently, the molecular identity of the mitochondrial calcium uniporter (MCU), the transporter that mediates mitochondrial calcium uptake, was revealed. Its role in pancreatic ß-cell signal transduction modulation was clarified, opening new perspectives for intervention. Here, we investigated the effects of a mitochondrial Ca2+-targeted nutritional intervention strategy on metabolism/secretion coupling, in a model of pancreatic insulin-secreting cells (INS-1E). Acute treatment of INS-1E cells with the natural plant flavonoid and MCU activator kaempferol, at a low micromolar range, increased mitochondrial calcium rise during glucose stimulation, without affecting the expression level of the MCU and with no cytotoxicity. Enhanced mitochondrial calcium rises potentiated glucose-induced insulin secretion. Conversely, the MCU inhibitor mitoxantrone inhibited mitochondrial Ca2+ uptake and prevented both glucose-induced insulin secretion and kaempferol-potentiated effects. The kaempferol-dependent potentiation of insulin secretion was finally validated in a model of a standardized pancreatic human islet. We conclude that the plant product kaempferol activates metabolism/secretion coupling in insulin-secreting cells by modulating mitochondrial calcium uptake.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Quempferoles/farmacología , Animales , Técnicas de Cultivo de Célula , Humanos , Mitocondrias/metabolismo
4.
Br J Pharmacol ; 176(17): 3250-3263, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31166006

RESUMEN

BACKGROUND AND PURPOSE: Quinic acid (QA) is an abundant natural compound from plant sources which may improve metabolic health. However, little attention has been paid to its effects on pancreatic beta-cell functions, which contribute to the control of metabolic health by lowering blood glucose. Strategies targeting beta-cell signal transduction are a new approach for diabetes treatment. This study investigated the efficacy of QA to stimulate beta-cell function by targeting the basic molecular machinery of metabolism-secretion coupling. EXPERIMENTAL APPROACH: We measured bioenergetic parameters and insulin exocytosis in a model of insulin-secreting beta-cells (INS-1E), together with Ca2+ homeostasis, using genetically encoded sensors, targeted to different subcellular compartments. Islets from mice chronically infused with QA were also assessed. KEY RESULTS: QA triggered transient cytosolic Ca2+ increases in insulin-secreting cells by mobilizing Ca2+ from intracellular stores, such as endoplasmic reticulum. Following glucose stimulation, QA increased glucose-induced mitochondrial Ca2+ transients. We also observed a QA-induced rise of the NAD(P)H/NAD(P)+ ratio, augmented ATP synthase-dependent respiration, and enhanced glucose-stimulated insulin secretion. QA promoted beta-cell function in vivo as islets from mice infused with QA displayed improved glucose-induced insulin secretion. A diet containing QA improved glucose tolerance in mice. CONCLUSIONS AND IMPLICATIONS: QA modulated intracellular Ca2+ homeostasis, enhancing glucose-stimulated insulin secretion in both INS-1E cells and mouse islets. By increasing mitochondrial Ca2+ , QA activated the coordinated stimulation of oxidative metabolism, mitochondrial ATP synthase-dependent respiration, and therefore insulin secretion. Bioactive agents raising mitochondrial Ca2+ in pancreatic beta-cells could be used to treat diabetes.


Asunto(s)
Productos Biológicos/farmacología , Calcio/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ácido Quínico/farmacología , Actinidia/química , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Células Cultivadas , Café/química , Relación Dosis-Respuesta a Droga , Hippophae/química , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Prunus/química , Ácido Quínico/química , Ácido Quínico/aislamiento & purificación , Ratas , Relación Estructura-Actividad , Vaccinium macrocarpon/química , Vaccinium myrtillus/química
5.
FASEB J ; 33(4): 4660-4674, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30589571

RESUMEN

In pancreatic ß-cells, mitochondria generate signals that promote insulin granule exocytosis. Here we study how lysine acetylation of mitochondrial proteins mechanistically affects metabolism-secretion coupling in insulin-secreting cells. Using mass spectrometry-based proteomics, we identified lysine acetylation sites in rat insulinoma cell line clone 1E cells. In cells lacking the mitochondrial lysine deacetylase sirtuin-3 (SIRT3), several matrix proteins are hyperacetylated. Disruption of the SIRT3 gene has a deleterious effect on mitochondrial energy metabolism and Ca2+ signaling. Under resting conditions, SIRT3 deficient cells are overactivated, which elevates the respiratory rate and enhances calcium signaling and basal insulin secretion. In response to glucose, the SIRT3 knockout cells are unable to mount a sustained cytosolic ATP response. Calcium signaling is strongly reduced and the respiratory response as well as insulin secretion are blunted. We propose mitochondrial protein lysine acetylation as a control mechanism in ß-cell energy metabolism and Ca2+ signaling.-De Marchi, U., Galindo, A. N., Thevenet, J., Hermant, A., Bermont, F., Lassueur, S., Domingo, J. S., Kussmann, M., Dayon, L., Wiederkehr, A. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells.


Asunto(s)
Señalización del Calcio/fisiología , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , Mitocondrias/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Metabolismo Energético/fisiología , Glucosa/farmacología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Sirtuina 3/metabolismo , Espectrometría de Masas en Tándem
6.
Nat Commun ; 8(1): 1852, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176619

RESUMEN

Antigen cross-presentation by dendritic cells (DC) stimulates cytotoxic T cell activation to promote immunity to intracellular pathogens, viruses and cancer. Phagocytosed antigens generate potent T cell responses, but the signalling and trafficking pathways regulating their cross-presentation are unclear. Here, we show that ablation of the store-operated-Ca2+-entry regulator STIM1 in mouse myeloid cells impairs cross-presentation and DC migration in vivo and in vitro. Stim1 ablation reduces Ca2+ signals, cross-presentation, and chemotaxis in mouse bone-marrow-derived DCs without altering cell differentiation, maturation or phagocytic capacity. Phagosomal pH homoeostasis and ROS production are unaffected by STIM1 deficiency, but phagosomal proteolysis and leucyl aminopeptidase activity, IRAP recruitment, as well as fusion of phagosomes with endosomes and lysosomes are all impaired. These data suggest that STIM1-dependent Ca2+ signalling promotes the delivery of endolysosomal enzymes to phagosomes to enable efficient cross-presentation.


Asunto(s)
Presentación de Antígeno/fisiología , Células Dendríticas/fisiología , Fagosomas/fisiología , Molécula de Interacción Estromal 1/metabolismo , Animales , Calcio/metabolismo , Movimiento Celular/fisiología , Cistinil Aminopeptidasa/metabolismo , Células Dendríticas/inmunología , Retículo Endoplásmico/metabolismo , Concentración de Iones de Hidrógeno , Ratones Noqueados , Fagocitosis/fisiología , Fagosomas/química , Especies Reactivas de Oxígeno/metabolismo , Molécula de Interacción Estromal 1/genética
7.
Sci Rep ; 7(1): 3462, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615691

RESUMEN

Satellite cells, localized within muscles in vivo, are Pax7+ muscle stem cells supporting skeletal muscle growth and regeneration. Unfortunately, their amplification in vitro, required for their therapeutic use, is associated with reduced regenerative potential. In the present study, we investigated if human myogenic reserve cells (MRC) obtained in vitro, represented a reliable cell source for muscle repair. For this purpose, primary human myoblasts were freshly isolated and expanded. After 2 days of differentiation, 62 ± 2.9% of the nuclei were localized in myotubes and 38 ± 2.9% in the mononucleated non-fusing MRC. Eighty percent of freshly isolated human MRC expressed a phenotype similar to human quiescent satellite cells (CD56+/Pax7+/MyoD-/Ki67- cells). Fourteen days and 21 days after cell transplantation in immunodeficient mice, live human cells were significantly more numerous and the percentage of Pax7+/human lamin A/C+ cells was 2 fold higher in muscles of animals injected with MRC compared to those injected with human myoblasts, despite that percentage of spectrin+ and lamin A/C+ human fibers in both groups MRC were similar. Taken together, these data provide evidence that MRC generated in vitro represent a promising source of cells for improving regeneration of injured skeletal muscles.


Asunto(s)
Desarrollo de Músculos , Regeneración , Trasplante de Células Madre , Células Madre/citología , Células Madre/metabolismo , Adulto , Animales , Biomarcadores , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Huésped Inmunocomprometido , Ratones , Ratones Transgénicos , Modelos Animales , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/trasplante , Trasplante de Células Madre/métodos , Adulto Joven
8.
EMBO Rep ; 18(3): 451-463, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28174208

RESUMEN

Mitochondrial flashes mediated by optic atrophy 1 (OPA1) fusion protein are bioenergetic responses to stochastic drops in mitochondrial membrane potential (Δψm) whose origin is unclear. Using structurally distinct genetically encoded pH-sensitive probes, we confirm that flashes are matrix alkalinization transients, thereby establishing the pH nature of these events, which we renamed "mitopHlashes". Probes located in cristae or intermembrane space as verified by electron microscopy do not report pH changes during Δψm drops or respiratory chain inhibition. Opa1 ablation does not alter Δψm fluctuations but drastically decreases the efficiency of mitopHlash/Δψm coupling, which is restored by re-expressing fusion-deficient OPA1K301A and preserved in cells lacking the outer-membrane fusion proteins MFN1/2 or the OPA1 proteases OMA1 and YME1L, indicating that mitochondrial membrane fusion and OPA1 proteolytic processing are dispensable. pH/Δψm uncoupling occurs early during staurosporine-induced apoptosis and is mitigated by OPA1 overexpression, suggesting that OPA1 maintains mitopHlash competence during stress conditions. We propose that OPA1 stabilizes respiratory chain supercomplexes in a conformation that enables respiring mitochondria to compensate a drop in Δψm by an explosive matrix pH flash.


Asunto(s)
GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Apoptosis , Técnicas Biosensibles , Dinaminas/genética , Dinaminas/metabolismo , Etopósido/farmacología , Expresión Génica , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...