Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6626, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863876

RESUMEN

Dysregulation of pathogen-recognition pathways of the innate immune system is associated with multiple autoimmune disorders. Due to the intricacies of the molecular network involved, the identification of pathway- and disease-specific therapeutics has been challenging. Using a phenotypic assay monitoring the degradation of the immune adapter TASL, we identify feeblin, a chemical entity which inhibits the nucleic acid-sensing TLR7/8 pathway activating IRF5 by disrupting the SLC15A4-TASL adapter module. A high-resolution cryo-EM structure of feeblin with SLC15A4 reveals that the inhibitor binds a lysosomal outward-open conformation incompatible with TASL binding on the cytoplasmic side, leading to degradation of TASL. This mechanism of action exploits a conformational switch and converts a target-binding event into proteostatic regulation of the effector protein TASL, interrupting the TLR7/8-IRF5 signaling pathway and preventing downstream proinflammatory responses. Considering that all components involved have been genetically associated with systemic lupus erythematosus and that feeblin blocks responses in disease-relevant human immune cells from patients, the study represents a proof-of-concept for the development of therapeutics against this disease.


Asunto(s)
Lupus Eritematoso Sistémico , Receptor Toll-Like 7 , Humanos , Receptor Toll-Like 7/metabolismo , Factores Reguladores del Interferón/metabolismo , Transducción de Señal , Antiinflamatorios , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
2.
Cell Rep ; 42(8): 112916, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527038

RESUMEN

Endolysosomal Toll-like receptors (TLRs) play crucial roles in immune responses to pathogens, while aberrant activation of these pathways is associated with autoimmune diseases, including systemic lupus erythematosus (SLE). The endolysosomal solute carrier family 15 member 4 (SLC15A4) is required for TLR7/8/9-induced responses and disease development in SLE models. SLC15A4 has been proposed to affect TLR7-9 activation through its transport activity, as well as by assembling an IRF5-activating complex with TASL, but the relative contribution of these functions remains unclear. Here, we show that the essential role of SLC15A4 is to recruit TASL to endolysosomes, while its transport activity is dispensable when TASL is tethered to this compartment. Endolysosomal-localized TASL rescues TLR7-9-induced IRF5 activation as well as interferon ß and cytokine production in SLC15A4-deficient cells. SLC15A4 acts as signaling scaffold, and this function is essential to control TLR7-9-mediated inflammatory responses. These findings support targeting the SLC15A4-TASL complex as a potential therapeutic strategy for SLE and related diseases.


Asunto(s)
Lupus Eritematoso Sistémico , Receptor Toll-Like 7 , Humanos , Receptor Toll-Like 7/metabolismo , Receptores Toll-Like/metabolismo , Factores Reguladores del Interferón/metabolismo , Inmunidad Innata , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA