Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36839523

RESUMEN

Chagas disease and Human African Trypanosomiasis, caused by Trypanosoma cruzi and T. brucei, respectively, pose relevant health challenges throughout the world, placing 65 to 70 million people at risk each. Given the limited efficacy and severe side effects associated with current chemotherapy, new drugs are urgently needed for both diseases. Here, we report the screening of the Pathogen Box collection against cruzain and TbrCatL, validated targets for Chagas disease and Human African Trypanosomiasis, respectively. Enzymatic assays were applied to screen 400 compounds, validate hits, determine IC50 values and, when possible, mechanisms of inhibition. In this case, 12 initial hits were obtained and ten were prioritized for follow-up. IC50 values were obtained for six of them (hit rate = 1.5%) and ranged from 0.46 ± 0.03 to 27 ± 3 µM. MMV687246 was found to be a mixed inhibitor of cruzain (Ki = 57 ± 6 µM) while MMV688179 was found to be a competitive inhibitor of cruzain with a nanomolar potency (Ki = 165 ± 63 nM). A putative binding mode for MMV688179 was obtained by docking. The six hits discovered against cruzain and TbrCatL are of great interest for further optimization by the medicinal chemistry community.

2.
ChemMedChem ; 17(19): e202200211, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35993440

RESUMEN

Chagas disease is a neglected tropical disease, endemic in Latin America and caused by the protozoan parasite Trypanosoma cruzi. Available treatments show low cure efficacy during the chronic phase of the disease and cause a series of side effects, reinforcing the need to develop new drugs against Chagas disease. In this work, we describe the optimization of a trypanocidal hit compound recently reported in phenotypic high-throughput screening studies against Trypanosoma cruzi. A hit-to-lead process was initiated and a structure-activity relationship against Trypanosoma cruzi was obtained after the synthesis and biological evaluation of 22 new benzenesulfonylpiperazine derivatives. From this structure-activity relationship study, we identified three compounds with a promising predicted ADMET profile and potency comparable to the reference drug benznidazole, which are candidates for further development towards therapies for Chagas disease.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA