Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100588, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38883145

RESUMEN

Background and Purpose: Application of different deformable dose accumulation (DDA) solutions makes institutional comparisons after online-adaptive magnetic resonance-guided radiotherapy (OA-MRgRT) challenging. The aim of this multi-institutional study was to analyze accuracy and agreement of DDA-implementations in OA-MRgRT. Material and Methods: One gold standard (GS) case deformed with a biomechanical-model and five clinical cases consisting of prostate (2x), cervix, liver, and lymph node cancer, treated with OA-MRgRT, were analyzed. Six centers conducted DDA using institutional implementations. Deformable image registration (DIR) and DDA results were compared using the contour metrics Dice Similarity Coefficient (DSC), surface-DSC, Hausdorff-distance (HD95%), and accumulated dose-volume histograms (DVHs) analyzed via intraclass correlation coefficient (ICC) and clinical dosimetric criteria (CDC). Results: For the GS, median DDA errors ranged from 0.0 to 2.8 Gy across contours and implementations. DIR of clinical cases resulted in DSC > 0.8 for up to 81.3% of contours and a variability of surface-DSC values depending on the implementation. Maximum HD95%=73.3 mm was found for duodenum in the liver case. Although DVH ICC > 0.90 was found after DDA for all but two contours, relevant absolute CDC differences were observed in clinical cases: Prostate I/II showed maximum differences in bladder V28Gy (10.2/7.6%), while for cervix, liver, and lymph node the highest differences were found for rectum D2cm3 (2.8 Gy), duodenum Dmax (7.1 Gy), and rectum D0.5cm3 (4.6 Gy). Conclusion: Overall, high agreement was found between the different DIR and DDA implementations. Case- and algorithm-dependent differences were observed, leading to potentially clinically relevant results. Larger studies are needed to define future DDA-guidelines.

2.
Clin Transl Radiat Oncol ; 47: 100797, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831754

RESUMEN

Background and purpose: Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac. Materials and methods: A consortium was founded of thirteen centers that treat pancreatic tumors on a 1.5 T MR-Linac. A phased planning exercise was conducted in which centers iteratively created treatment plans for two cases of pancreatic cancer. Each phase was followed by a meeting where the instructions for the next phase were determined. After three phases, a consensus protocol was reached. Results: In the benchmarking phase (phase I), substantial variation between the SBRT protocols became apparent (for example, the gross tumor volume (GTV) D99% ranged between 36.8 - 53.7 Gy for case 1, 22.6 - 35.5 Gy for case 2). The next phase involved planning according to the same basic dosimetric objectives, constraints, and planning margins (phase II), which led to a large degree of harmonization (GTV D99% range: 47.9-53.6 Gy for case 1, 33.9-36.6 Gy for case 2). In phase III, the final consensus protocol was formulated in a treatment planning system template and again used for treatment planning. This not only resulted in further dosimetric harmonization (GTV D99% range: 48.2-50.9 Gy for case 1, 33.5-36.0 Gy for case 2) but also in less variation of estimated treatment delivery times. Conclusion: A global consensus protocol has been developed for treatment planning for MR-guided pancreatic SBRT on a 1.5 T MR-Linac. Aside from harmonizing the large variation in the current clinical practice, this protocol can provide a starting point for centers that are planning to treat pancreatic tumors on MR-Linac systems.

3.
Radiother Oncol ; 197: 110347, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815694

RESUMEN

PURPOSE: Stereotactic body radiotherapy (SBRT) has emerged as a promising new modality for locally advanced pancreatic cancer (LAPC). The current study evaluated the efficacy and toxicity of SBRT in patients with LAPC (NCT03648632). METHODS: This prospective single institution phase II study recruited patients with histologically or cytologically proven adenocarcinoma of the pancreas after more than two months of combination chemotherapy with no sign of progressive disease. Patients were prescribed 50-60 Gy in 5-8 fractions. Patients were initially treated on a standard linac (n = 4). Since 2019, patients were treated using online magnetic resonance (MR) image-guidance on a 1.5 T MRI-linac, where the treatment plan was adapted to the anatomy of the day. The primary endpoint was resection rate. RESULTS: Twenty-eight patients were enrolled between August 2018 and March 2022. All patients had non-resectable disease at time of diagnosis. Median follow-up from inclusion was 28.3 months (95 % CI 24.0-NR). Median progression-free and overall survival from inclusion were 7.8 months (95 % CI 5.0-14.8) and 16.5 months (95 % CI 10.7-22.6), respectively. Six patients experienced grade III treatment-related adverse events (jaundice, nausea, vomiting and/or constipation). One of the initial four patients receiving treatment on a standard linac experienced a grade IV perforation of the duodenum. Six patients (21 %) underwent resection. A further one patient was offered resection but declined. CONCLUSION: This study demonstrates that SBRT in patients with LAPC was associated with promising overall survival and resection rates. Furthermore, SBRT was safe and well tolerated, with limited severe toxicities.

4.
Radiother Oncol ; 192: 110090, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224916

RESUMEN

BACKGROUND AND PURPOSE: The SOFT trial is a prospective, multicenter, phase 2 trial investigating magnetic resonance (MR)-guided stereotactic ablative radiotherapy (SABR) for abdominal, soft tissue metastases in patients with oligometastatic disease (OMD) (clinicaltrials.gov ID NCT04407897). We present the primary endpoint analysis of 1-year treatment-related toxicity (TRAE). MATERIALS AND METHODS: Patients with up to five oligometastases from non-hematological cancers were eligible for inclusion. A risk-adapted strategy prioritized fixed organs at risk (OAR) constraints over target coverage. Fractionation schemes were 45-67.5 Gy in 3-8 fractions. The primary endpoint was grade ≥ 4 TRAE within 12 months post-SABR. The association between the risk of gastrointestinal (GI) toxicity and clinical and dosimetric parameters was tested using a normal tissue complication probability model. RESULTS: We included 121 patients with 147 oligometastatic targets, mainly located in the liver (41 %), lymph nodes (35 %), or adrenal glands (14 %). Nearly half of all targets (48 %, n = 71) were within 10 mm of a radiosensitive OAR. No grade 4 or 5 TRAEs, 3.5 % grade 3 TRAEs, and 43.7 % grade 2 TRAEs were reported within the first year of follow-up. We found a significant association between grade ≥ 2 GI toxicity and the parameters GI OAR D0.1cc, D1cc, and D20cc. CONCLUSION: In this phase II study of MR-guided SABR of oligometastases in the infra-diaphragmatic region, we found a low incidence of toxicity despite half of the lesions being within 10 mm of a radiosensitive OAR. GI OAR D0.1cc, D1cc, and D20cc were associated with grade ≥ 2 GI toxicity.


Asunto(s)
Neoplasias , Radiocirugia , Humanos , Estudios Prospectivos , Fraccionamiento de la Dosis de Radiación , Radiocirugia/efectos adversos
5.
Front Oncol ; 13: 1285725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023233

RESUMEN

Background: Adaptive MRI-guided radiotherapy (MRIgRT) requires accurate and efficient segmentation of organs and targets on MRI scans. Manual segmentation is time-consuming and variable, while deformable image registration (DIR)-based contour propagation may not account for large anatomical changes. Therefore, we developed and evaluated an automatic segmentation method using the nnU-net framework. Methods: The network was trained on 38 patients (76 scans) with localized prostate cancer and tested on 30 patients (60 scans) with localized prostate, metastatic prostate, or bladder cancer treated at a 1.5 T MRI-linac at our institution. The performance of the network was compared with the current clinical workflow based on DIR. The segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) metrics. Results: The trained network successfully segmented all 600 structures in the test set. High similarity was obtained for most structures, with 90% of the contours having a DSC above 0.9 and 86% having an MSD below 1 mm. The largest discrepancies were found in the sigmoid and colon structures. Stratified analysis on cancer type showed that the best performance was seen in the same type of patients that the model was trained on (localized prostate). Especially in patients with bladder cancer, the performance was lower for the bladder and the surrounding organs. A complete automatic delineation workflow took approximately 1 minute. Compared with contour transfer based on the clinically used DIR algorithm, the nnU-net performed statistically better across all organs, with the most significant gain in using the nnU-net seen for organs subject to more considerable volumetric changes due to variation in the filling of the rectum, bladder, bowel, and sigmoid. Conclusion: We successfully trained and tested a network for automatically segmenting organs and targets for MRIgRT in the male pelvis region. Good test results were seen for the trained nnU-net, with test results outperforming the current clinical practice using DIR-based contour propagation at the 1.5 T MRI-linac. The trained network is sufficiently fast and accurate for clinical use in an online setting for MRIgRT. The model is provided as open-source.

6.
Acta Oncol ; 62(11): 1551-1560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815867

RESUMEN

BACKGROUND: As magnetic resonance imaging (MRI) becomes increasingly integrated into radiotherapy (RT) for enhanced treatment planning and adaptation, the inherent geometric distortion in acquired MR images pose a potential challenge to treatment accuracy. This study aimed to evaluate the geometric distortion levels in the clinical MRI protocols used across Danish RT centers and discuss influence of specific sequence parameters. Based on the variety in geometric performance across centers, we assess if harmonization of MRI sequences is a relevant measure. MATERIALS AND METHODS: Nine centers participated with 12 MRI scanners and MRI-Linacs (MRL). Using a travelling phantom approach, a reference MRI sequence was used to assess variation in baseline distortion level between scanners. The phantom was also scanned with local clinical MRI sequences for brain, head/neck (H/N), abdomen, and pelvis. The influence of echo time, receiver bandwidth, image weighting, and 2D/3D acquisition was investigated. RESULTS: We found a large variation in geometric accuracy across 93 clinical sequences examined, exceeding the baseline variation found between MRI scanners (σ = 0.22 mm), except for abdominal sequences where the variation was lower. Brain and abdominal sequences showed lowest distortion levels ([0.22, 2.26] mm), and a large variation in performance was found for H/N and pelvic sequences ([0.19, 4.07] mm). Post hoc analyses revealed that distortion levels decreased with increasing bandwidth and a less clear increase in distortion levels with increasing echo time. 3D MRI sequences had lower distortion levels than 2D (median of 1.10 and 2.10 mm, respectively), and in DWI sequences, the echo-planar imaging read-out resulted in highest distortion levels. CONCLUSION: There is a large variation in the geometric distortion levels of clinical MRI sequences across Danish RT centers, and between anatomical sites. The large variation observed makes harmonization of MRI sequences across institutions and adoption of practices from well-performing anatomical sites, a relevant measure within RT.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Encéfalo , Fantasmas de Imagen
7.
Phys Med ; 114: 102682, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717398

RESUMEN

PURPOSE: The current study investigated the impact of abdominal compression on motion and the delivered dose during non-gated, magnetic resonance image (MRI)-guided radiation ablation of adrenal gland metastases. METHODS: Thirty-one patients with adrenal gland metastases treated to 45-60 Gy in 3-8 fractions on a 1.5 T MRI-linac were included in the study. The patients were breathing freely (n = 14) or with motion restricted by using an abdominal compression belt (n = 17). The time-resolved position of the target in online 2D cine MR images acquired during treatment was assessed and used to estimate the dose delivered to the GTV and abutting luminal organs at risk (OAR). RESULTS: The median (range) 3D root-mean-square target position error was significantly higher in patients treated without a compression belt [2.9 (1.9-5.6) mm] compared to patients using the belt [2.1 (1.2-3.5) mm] (P < 0.01). The median (range) GTV V95% was significantly reduced from planned 98.6 (65.9-100) % to delivered 96.5 (64.5-99.9) % due to motion (P < 0.01). Most prominent dose reductions were found in patients showing either large target drift or respiration motion and were mainly treated without abdominal compression. Motion did not lead to an increased number of constraint violations for luminal OAR. CONCLUSIONS: Acceptable target coverage and dose to OAR was observed in the vast majority of patients despite intra-fractional motion during adaptive MRI-guided radiation ablation. The use of abdominal compression significantly reduced the target position error and prevented the most prominent target coverage degradations and is, therefore, recommended as motion management at MRI-linacs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias de las Glándulas Suprarrenales/diagnóstico por imagen , Neoplasias de las Glándulas Suprarrenales/radioterapia , Glándulas Suprarrenales
8.
Curr Oncol ; 30(7): 6820-6837, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37504359

RESUMEN

Pancreatic cancer is rising as one of the leading causes of cancer-related death worldwide. Patients often present with advanced disease, limiting curative treatment options and therefore making management of the disease difficult. Systemic chemotherapy has been an established part of the standard treatment in patients with both locally advanced and metastatic pancreatic cancer. In contrast, the use of radiotherapy has no clear defined role in the treatment of these patients. With the evolving imaging and radiation techniques, radiation could become a plausible intervention. In this review, we give an overview over the available data regarding radiotherapy, chemoradiation, and stereotactic body radiation therapy. We performed a systematic search of Embase and the PubMed database, focusing on studies involving locally advanced pancreatic cancer (or non-resectable pancreatic cancer) and radiotherapy without any limitation for the time of publication. We included randomised controlled trials involving patients with locally advanced pancreatic cancer, including radiotherapy, chemoradiation, or stereotactic body radiation therapy. The included articles represented mainly small patient groups and had a high heterogeneity regarding radiation delivery and modality. This review presents conflicting results concerning the addition of radiation and modality in the treatment regimen. Further research is needed to improve outcomes and define the role of radiation therapy in pancreatic cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Radiocirugia , Humanos , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Adenocarcinoma/radioterapia , Adenocarcinoma/tratamiento farmacológico , Quimioradioterapia/métodos , Radiocirugia/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Neoplasias Pancreáticas
9.
Phys Imaging Radiat Oncol ; 24: 167-172, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36439329

RESUMEN

Background and purpose: 3D Magnetic Resonance Imaging (MRI) is used in radiation therapy for reference planning and, lately, for adaptive treatments on MR accelerators. This study aimed to investigate the impact of different types of respiratory motion on the apparent target position and extent in such scans. Materials and methods: An MRI motion phantom with a 30 mm diameter target was used to simulate cranial-caudal (CC) motion and imaged at an MR-Linac using a standard clinically released 3D T2w sequence. Scans were acquired for each combination of functions (sin(t), sin4(t) and sin12(t)), peak-to-peak amplitudes (5, 10, 15 and 20 mm), and periods (4, 5 and 6 s). Furthermore, respiration CC motion patterns from two patients were used. Motion functions were shifted such that the time average target position would match a static reference scan at 0-position. The target was automatically identified in coronal and sagittal images using k-means clustering. The mean position and area of the target were calculated and compared to the reference scan. Results: Artefacts increased with amplitude and depended on the motion type. Sin(t) and sin4(t) oscillations resulted in a blurring of the target, which led to an increased target area, while sin12(t) motion did not show significant changes in the target area. However, for the sin12(t) motion, the offset in apparent position was prominent, while that was not the case for the sin(t) and sin4(t) motion. The patient respiration motion profiles showed similar trends. Conclusions: In 3D MRI, target motion can change apparent tumour extent and apparent position. The changes increase with motion amplitude and depend on the motion type.

10.
Radiother Oncol ; 172: 126-133, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35545166

RESUMEN

INTRODUCTION: In a recent study, setup uncertainties in the direction of the heart were shown to impact the overall survival of non-small cell lung cancer (NSCLC) patients after radiotherapy, indicating the causal effect between heart irradiation and survival. The current study aims to externally evaluate this observation within a patient cohort treated using daily IGRT. METHOD: NSCLC patients with locally-advanced disease and daily CBCT were included. For all treatment fractions, the distance between the isocenter and the heart was evaluated based on the clinical setup registrations. The variation in heart position between planning and treatment (DeltaDistance) was estimated from these registrations. The possible impact of DeltaDistance on survival was analysed by a multivariable Cox model of overall survival, allowing for a time-dependent impact of DeltaDistance to allow for toxicity latency. RESULTS: Daily CBCT information was available for 489 patients at Odense University Hospital. The primary Cox model contained GTV volume, patient age, performance status, and DeltaDistance. DeltaDistance significantly impacted overall survival approximately 50 months after radiotherapy. Subanalyses indicated that the observed effect is mainly present among the patients with the least clinical risk factors. CONCLUSION: Our results confirm the impact of setup variations in the direction of the heart on the survival of NSCLC patients, even within a cohort using daily CBCT setup guidance. This result indicates a causal effect between heart irradiation and survival. It will be challenging to reduce the setup uncertainty even further; thus, increased focus on dose constraints on the heart seems warranted.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia , Tórax
11.
Artículo en Inglés | MEDLINE | ID: mdl-35586786

RESUMEN

The treatment of oligometastatic disease using MR guidance is an evolving field. Since August 2018 patients are treated on a 1.5 Tesla MR-Linac (MRL). We present current workflows and practice standards from seven institutions for the initial patients treated for lymph node and liver metastases.

12.
J Med Imaging Radiat Oncol ; 66(2): 267-278, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243775

RESUMEN

A high-quality treatment plan aims to best achieve the clinical prescription, balancing high target dose to maximise tumour control against sufficiently low organ-at-risk dose for acceptably low toxicity. Treatment planning (TP) includes multiple steps from simulation/imaging and segmentation to technical plan production and reporting. Consistent quality across this process requires close collaboration and communication between clinical and technical experts, to clearly understand clinical requirements and priorities and also practical uncertainties, limitations and compromises. TP quality depends on many aspects, starting from commissioning and quality management of the treatment planning system (TPS), including its measured input data and detailed understanding of TPS models and limitations. It requires rigorous quality assurance of the whole planning process and it links to plan deliverability, assessable by measurement-based verification. This review highlights some factors influencing plan quality, for consideration for optimal plan construction and hence optimal outcomes for each patient. It also indicates some challenges, sources of difference and current developments. The topics considered include: the evolution of TP techniques; dose prescription issues; tools and methods to evaluate plan quality; and some aspects of practical TP. The understanding of what constitutes a high-quality treatment plan continues to evolve with new techniques, delivery methods and related evidence-based science. This review summarises the current position, noting developments in the concept and the need for further robust tools to help achieve it.


Asunto(s)
Neoplasias , Radioterapia de Intensidad Modulada , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
13.
Radiother Oncol ; 167: 165-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923034

RESUMEN

BACKGROUND AND PURPOSE: With daily, MR-guided online adapted radiotherapy (MRgART) it may be possible to reduce the PTV in pelvic RT. This study investigated the potential reduction in normal tissue complication probability (NTCP) of MRgART compared to standard radiotherapy for high-risk prostate cancer. MATERIALS AND METHODS: Twenty patients treated with 78 Gy to the prostate and 56 Gy to elective pelvic lymph nodes were included. VMAT plans were generated with standard clinical PTV margins. Additionally to the planning MR, patients had three MRI scans during treatment to simulate an MRgART. A reference plan with PTV margins determined for MRgART was created per patient and adapted to each of the following MRs. Adapted plans were warped to the planning MR for dose accumulation. The standard plan was rigidly registered to each adaptation MR before it was warped to the planning MR for dose accumulation. Dosimetric impact was compared by DVH analysis and potential clinical effects were assessed by NTCP modeling. RESULTS: MRgART yielded statistically significant lower doses for the bladder wall, rectum and peritoneal cavity, compared to the standard RT, which translated into reduced median risks of urine incontinence (ΔNTCP 2.8%), urine voiding pain (ΔNTCP 2.8%) and acute gastrointestinal toxicity (ΔNTCP 17.4%). Mean population accumulated doses were as good or better for all investigated OAR when planned for MRgART as standard RT. CONCLUSION: Online adapted radiotherapy may reduce the dose to organs at risk in high-risk prostate cancer patients, due to reduced PTV margins. This potentially translates to significant reductions in the risks of acute and late adverse effects.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Masculino , Órganos en Riesgo , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/efectos adversos , Radioterapia de Intensidad Modulada/efectos adversos
14.
Front Oncol ; 12: 1086258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36776378

RESUMEN

MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice in recent years and have enabled MR-guided adaptive radiation therapy (MRgART). However, by accounting for anatomical changes throughout radiation therapy (RT) and delivering different treatment plans at each fraction, adaptive radiation therapy (ART) highlights several challenges in terms of calculating the total delivered dose. Dose accumulation strategies-which typically involve deformable image registration between planning images, deformable dose mapping, and voxel-wise dose summation-can be employed for ART to estimate the delivered dose. In MRgART, plan adaptation on MRI instead of CT necessitates additional considerations in the dose accumulation process because MRI pixel values do not contain the quantitative information used for dose calculation. In this review, we discuss considerations for dose accumulation specific to MRgART and in relation to current MR-linac clinical workflows. We present a general dose accumulation framework for MRgART and discuss relevant quality assurance criteria. Finally, we highlight the clinical importance of dose accumulation in the ART era as well as the possible ways in which dose accumulation can transform clinical practice and improve our ability to deliver personalized RT.

15.
Radiother Oncol ; 160: 40-46, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33848564

RESUMEN

BACKGROUND AND PURPOSE: Tumour growth during radiotherapy may lead to geographical misses of the target volume. This study investigates the evolution of the tumour extent and evaluates the need for plan adaptation to ensure dose coverage of the target in glioblastoma patients. MATERIALS AND METHODS: The prospective study included 29 patients referred for 59.4 Gy in 33 fractions. Magnetic resonance imaging (MRI) was performed at the time of treatment planning, at fraction 10, 20, 30, and three weeks after the end of radiotherapy. The gross tumour volume (GTV) was defined as the T1w contrast-enhanced region plus the surgical cavity on each MRI set. The relative GTV volume and the maximum distance (Dmax) of the extent of the actual GTV outside the original GTV were measured. Based on the location of the actual GTV during radiotherapy and the original planned dose, a prospective clinical decision was made whether to adapt the treatment. RESULTS: Dose coverage of the GTV during radiotherapy was not compromised, and none of the radiotherapy plans was adapted. The median Dmax (range) was 5.7 (2.0-18.9) mm, 8.0 (2.0-27.4) mm, 8.0 (1.9-27.3) mm, and 8.9 (1.9-34.4) mm at fraction 10, 20, 30, and follow-up. The relative GTV volume and Dmax observed at fraction 10 were correlated with the values observed at follow-up (R = 0.74, p < 0.001 and R = 0.79, p < 0.001, respectively). CONCLUSION: Large variations in the GTV extent were observed, and changes often occurred early in the treatment. Plan adaptation for geographical misses was not performed in our cohort due to sufficient CTV margins.


Asunto(s)
Glioblastoma , Radioterapia Conformacional , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Carga Tumoral
16.
Acta Oncol ; 60(5): 589-597, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33688793

RESUMEN

BACKGROUND AND PURPOSE: Deformable image registration (DIR) and contour propagation are used in daily online adaptation for hybrid MRI linac (MRL) treatments. The accuracy of the propagated contours may vary depending on the chosen workflow (WF), affecting the amount of required manual corrections. This study investigated the impact of three different WFs of contour propagations produced by a clinical treatment planning system for a high-field MRL on head and neck cancer patients. METHODS: Seventeen patients referred for curative radiotherapy for oropharyngeal cancer underwent standard CT-based dose planning and MR scans in the treatment position for planning (pMR), and at the 10th (MR10), 20th (MR20) and 30th (MR30) fraction (±2). The primary tumour, a metastatic lymph node and 8 organs at risk were manually delineated on each set of T2 weighted images. Delineations were repeated one month later on the pMR by the same observer to determine the intra-observer variation (IOV). Three WFs were used to deform images in the treatment planning system for the high-field MRL: In WF1, only the planning image and contours were used as a reference for DIR and propagation to MR10,20,30. The most recently acquired image set prior to the daily images was deformed and uncorrected (WF2) versus manually corrected (WF3) structures propagated to the session image. Dice similarity coefficient (DSC), mean surface distance (MSD) and Hausdorff distance (HD) were calculated for each structure in each model. RESULTS: Population median DSC, MSD and HD for WF1 and WF3 were similar and slightly better than for WF2. WF3 provided higher accuracy than WF1 for structures that are likely to shrink. All DIR workflows were less accurate than the IOV. CONCLUSIONS: WF1 and WF3 provide higher accuracy in structure propagation than WF2. Manual revision and correction of propagated structures are required for all evaluated workflows.


Asunto(s)
Neoplasias de Cabeza y Cuello , Radioterapia Guiada por Imagen , Algoritmos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Interpretación de Imagen Radiográfica Asistida por Computador , Planificación de la Radioterapia Asistida por Computador
17.
Phys Med Biol ; 66(4): 045034, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33321475

RESUMEN

The clinical introduction of hybrid magnetic resonance (MR) guided radiotherapy (RT) delivery systems has led to the need to validate the end-to-end dose delivery performance on such machines. In the current study, an MR visible phantom was developed and used to test the spatial deviation between planned and delivered dose at two 1.5 T MR linear accelerator (MR linac) systems, including pre-treatment imaging, dose planning, online imaging, image registration, plan adaptation, and dose delivery. The phantom consisted of 3D printed plastic and MR visible silicone rubber. It was designed to minimise air gaps close to the radiochromic film used as a dosimeter. Furthermore, the phantom was designed to allow submillimetre, reproducible positioning of the film in the phantom. At both MR linac systems, 54 complete adaptive, MR guided RT workflow sessions were performed. To test the dose delivery performance of the MR linac systems in various adaptive RT (ART) scenarios, the sessions comprised a range of systematic positional shifts of the phantom and imaging or plan adaptation conditions. In each workflow session, the positional translation between the film and the adaptive planned dose was determined. The results showed that the accuracy of the MR linac systems was between 0.1 and 0.9 mm depending on direction. The highest mean deviance observed was in the posterior-anterior direction, and the direction of the error was consistent between centres. The precision of the systems was related to whether the workflow utilized the internal image registration algorithm of the MR linac. Workflows using the internal registration algorithm led to a worse precision (0.2-0.7 mm) compared to workflows where the algorithm was decoupled (0.2 mm). In summary, the spatial deviation between planned and delivered dose of MR-guided ART at the two MR linac systems was well below 1 mm and thus acceptable for clinical use.


Asunto(s)
Imagen por Resonancia Magnética , Aceleradores de Partículas , Dosis de Radiación , Radioterapia Guiada por Imagen/instrumentación , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Flujo de Trabajo
18.
Radiat Oncol ; 15(1): 32, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32033574

RESUMEN

BACKGROUND: In this study we have evaluated the accuracy of automatic, deformable structure propagation from planning CT and MR scans for daily online plan adaptation for MR linac (MRL) treatment, which is an important element to minimize re-planning time and reduce the risk of misrepresenting the target due to this time pressure. METHODS: For 12 high-risk prostate cancer patients treated to the prostate and pelvic lymph nodes, target structures and organs at risk were delineated on both planning MR and CT scans and propagated using deformable registration to three T2 weighted MR scans acquired during the treatment course. Generated structures were evaluated against manual delineations on the repeated scans using intra-observer variation obtained on the planning MR as ground truth. RESULTS: MR-to-MR propagated structures had significant less median surface distance and larger Dice similarity index compared to CT-MR propagation. The MR-MR propagation uncertainty was similar in magnitude to the intra-observer variation. Visual inspection of the deformed structures revealed that small anatomical differences between organs in source and destination image sets were generally well accounted for while large differences were not. CONCLUSION: Both CT and MR based propagations require manual editing, but the current results show that MR-to-MR propagated structures require fewer corrections for high risk prostate cancer patients treated at a high-field MRL.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Órganos en Riesgo/efectos de la radiación , Fantasmas de Imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Masculino , Variaciones Dependientes del Observador , Pelvis/efectos de la radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
19.
Phys Imaging Radiat Oncol ; 15: 100-104, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33458333

RESUMEN

Magnetic resonance imaging (MRI) has exquisite soft-tissue contrast and is the foundation for image guided radiotherapy (IGRT) with integrated magnetic resonance linacs. However, MRI suffers from geometrical distortions. In this study the MRI system- and patient-induced geometric distortion at four different tumor-sites was investigated: adrenal gland (7 patients), liver (4 patients), pancreas (6 patients), prostate (20 patients). Maximum level of total distortion within the gross-tumor-volume (GTV) was 0.96 mm with no significant difference between abdominal patients (adrenal gland, liver, pancreas) and pelvic patients (prostate). Total tumor-site specific distortion depended on location in the field-of-view and increased with the distance to MRI iso-center.

20.
Acta Oncol ; 58(10): 1352-1357, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31241387

RESUMEN

Purpose: A 1.5 T MR Linac (MRL) has recently become available. MRL treatment workflows (WF) include online plan adaptation based on daily MR images (MRI). This study reports initial clinical experiences after five months of use in terms of patient compliance, cases, WF timings, and dosimetric accuracy. Method and materials: Two different WF were used dependent on the clinical situation of the day; Adapt To Position WF (ATP) where the reference plan position is adjusted rigidly to match the position of the targets and the OARs, and Adapt To Shape WF (ATS), where a new plan is created to match the anatomy of the day, using deformable image registration. Both WFs included three 3D MRI scans for plan adaptation, verification before beam on, and validation during IMRT delivery. Patient compliance and WF timings were recorded. Accuracy in dose delivery was assessed using a cylindrical diode phantom. Results: Nineteen patients have completed their treatment receiving a total of 176 fractions. Cases vary from prostate treatments (60Gy/20F) to SBRT treatments of lymph nodes (45 Gy/3F) and castration by ovarian irradiation (15 Gy/3F). The median session time (patient in to patient out) for 127 ATPs was 26 (21-78) min, four fractions lasted more than 45 min due to additional plan adaptation. For the 49 ATSs a median time of 12 (1-24) min was used for contouring resulting in a total median session time of 42 (29-91) min. Three SBRT fractions lasted more than an hour. The time on the MRL couch was well tolerated by the patients. The median gamma pass rate (2 mm,2% global max) for the adapted plans was 99.2 (93.4-100)%, showing good agreement between planned and delivered dose. Conclusion: MRL treatments, including daily MRIs, plan adaptation, and accurate dose delivery, are possible within a clinically acceptable timeframe and well tolerated by the patients.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Aceleradores de Partículas , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Castración/instrumentación , Castración/métodos , Estudios de Cohortes , Estudios de Factibilidad , Femenino , Humanos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/efectos de la radiación , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/radioterapia , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Ovario/diagnóstico por imagen , Ovario/efectos de la radiación , Cooperación del Paciente/estadística & datos numéricos , Fantasmas de Imagen , Próstata/diagnóstico por imagen , Próstata/efectos de la radiación , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Radiometría , Radiocirugia/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/instrumentación , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...