Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 113
1.
STAR Protoc ; 4(1): 102053, 2023 03 17.
Article En | MEDLINE | ID: mdl-36853720

Wilms' tumor protein 1 (WT1) is a tumor-associated antigen overexpressed in various cancers. As a self-antigen, negative selection reduces the number of WT1-specific T cell receptors (TCRs). Here, we provide a protocol to generate WT137-45-specific TCRs using healthy human peripheral blood mononuclear cells. We describe the expansion of WT1-specific T cell clones by two consecutive in vitro stimulations with autologous WT137-45-pulsed dendritic cells and peripheral blood lymphocytes. We then detail the detection with human leukocyte antigen/WT137-45 tetramers.


Kidney Neoplasms , Wilms Tumor , Humans , Epitopes , Leukocytes, Mononuclear , T-Lymphocytes, Cytotoxic , Wilms Tumor/metabolism , Kidney Neoplasms/metabolism
2.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article En | MEDLINE | ID: mdl-36499533

Although the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4+ and CD8+ T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC). In vitro-activated SARS-CoV-2-specific T cells were isolated and stimulated with SARS-CoV-2 peptide-loaded monocyte-derived tolDC or with SARS-CoV-2 peptide-loaded conventional (conv) DC. We demonstrate a significant decrease in the number of interferon (IFN)-γ spot-forming cells when SARS-CoV-2-specific T cells were stimulated with tolDC as compared to stimulation with convDC. Importantly, this IFN-γ downmodulation in SARS-CoV-2-specific T cells was antigen-specific, since T cells retain their capacity to respond to an unrelated antigen and are not mediated by T cell deletion. Altogether, we have demonstrated that SARS-CoV-2 peptide-pulsed tolDC induces SARS-CoV-2-specific T cell hyporesponsiveness in an antigen-specific manner as compared to stimulation with SARS-CoV-2-specific convDC. These observations underline the clinical potential of tolDC to correct the immunological imbalance in the critically ill.


COVID-19 , T-Lymphocytes , Humans , SARS-CoV-2 , Immune Tolerance , Dendritic Cells , Antigens , Peptides , Apoptosis
3.
Clin Hematol Int ; 4(4): 133-143, 2022 Dec.
Article En | MEDLINE | ID: mdl-36227519

The multicenter observational BiRD study investigated the real-world effectiveness and safety of ibrutinib in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and Waldenström's macroglobulinemia (WM) in Belgium. This interim analysis reports results for patients with CLL, with a median follow-up of 34 months. Overall, patients had predominantly relapsed/refractory disease (73%) and were elderly (median age 72 years) with high-risk features such as del17p and/or TP53 mutations (59%). Patients were included either prospectively or retrospectively, and the total patient population effectiveness results were adjusted with left truncation. In the effectiveness population (N = 221: prospective, n = 71; retrospective, n = 150), the overall response rate was 90.0%. Median progression-free survival was 38.3 months (prospective, not estimable; retrospective, 51.5 months) and median overall survival was not yet estimable in the total, prospective and retrospective groups. Treatment-emergent adverse events (TEAEs) for the prospective and retrospective groups are reported separately. Any-grade TEAEs of interest in the prospective/retrospective groups included infections (67.1%/60.1%), diarrhea (20.5%/10.5%), hypertension (16.4%/9.8%) and atrial fibrillation (12.3%/7.2%). Major bleeding was reported in 5.5%/3.3% of prospective/retrospective patients, with little difference observed between those receiving versus not receiving antithrombotic treatment. Discontinuations due to toxicity were reported in 10.5% of patients. Results from this interim analysis show treatment with ibrutinib to be effective and tolerable, with no new safety signals observed. Future analyses will report on longer-term follow-up.

4.
Oncoimmunology ; 11(1): 2096363, 2022.
Article En | MEDLINE | ID: mdl-35800158

Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.


Cancer Vaccines , Neoplasms , Antigens, Neoplasm , Cancer Vaccines/therapeutic use , Dendritic Cells , Humans , Immunotherapy , Neoplasms/drug therapy
5.
J Transl Med ; 20(1): 124, 2022 03 14.
Article En | MEDLINE | ID: mdl-35287669

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has proven to be a valuable new treatment option for patients with B-cell malignancies. However, by applying selective pressure, outgrowth of antigen-negative tumor cells can occur, eventually resulting in relapse. Subsequent rescue by administration of CAR-T cells with different antigen-specificity indicates that those tumor cells are still sensitive to CAR-T treatment and points towards a multi-target strategy. Due to their natural tumor sensitivity and highly cytotoxic nature, natural killer (NK) cells are a compelling alternative to T cells, especially considering the availability of an off-the-shelf unlimited supply in the form of the clinically validated NK-92 cell line. METHODS: Given our goal to develop a flexible system whereby the CAR expression repertoire of the effector cells can be rapidly adapted to the changing antigen expression profile of the target cells, electrotransfection with CD19-/BCMA-CAR mRNA was chosen as CAR loading method in this study. We evaluated the functionality of mRNA-engineered dual-CAR NK-92 against tumor B-cell lines and primary patient samples. In order to test the clinical applicability of the proposed cell therapy product, the effect of irradiation on the proliferative rate and functionality of dual-CAR NK-92 cells was investigated. RESULTS: Co-electroporation of CD19 and BMCA CAR mRNA was highly efficient, resulting in 88.1% dual-CAR NK-92 cells. In terms of CD107a degranulation, and secretion of interferon (IFN)-γ and granzyme B, dual-CAR NK-92 significantly outperformed single-CAR NK-92. More importantly, the killing capacity of dual-CAR NK-92 exceeded 60% of single and dual antigen-expressing cell lines, as well as primary tumor cells, in a 4h co-culture assay at low effector to target ratios, matching that of single-CAR counterparts. Furthermore, our results confirm that dual-CAR NK-92 irradiated with 10 Gy cease to proliferate and are gradually cleared while maintaining their killing capacity. CONCLUSIONS: Here, using the clinically validated NK-92 cell line as a therapeutic cell source, we established a readily accessible and flexible platform for the generation of highly functional dual-targeted CAR-NK cells.


B-Cell Maturation Antigen , Receptors, Chimeric Antigen , B-Cell Maturation Antigen/metabolism , Cytotoxicity, Immunologic , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism
6.
Front Immunol ; 13: 835618, 2022.
Article En | MEDLINE | ID: mdl-35281031

Background: Uncertainties remain about the molecular mechanisms governing clonal mast cell disorders (CMCD) and anaphylaxis. Objective: This study aims at comparing the burden, phenotype and behavior of mast cells (MCs) and basophils in patients with CMCD with wasp venom anaphylaxis (CMCD/WVA+), CMCD patients without anaphylaxis (CMCD/ANA-), patients with an elevated baseline serum tryptase (EBST), patients with wasp venom anaphylaxis without CMCD (WVA+) and patients with a non-mast cell haematological pathology (NMHP). Methods: This study included 20 patients with CMCD/WVA+, 24 with CMCD/ANA-, 19 with WVA+, 6 with EBST and 5 with NMHP. We immunophenotyped MCs and basophils and compared baseline serum tryptase (bST) and both total and venom specific IgE in the different groups. For basophil studies, 13 healthy controls were also included. Results: Higher levels of bST were found in CMCD patients with wasp venom anaphylaxis, CMCD patients without anaphylaxis and EBST patients. Total IgE levels were highest in patients with wasp venom anaphylaxis with and without CMCD. Bone marrow MCs of patients with CMCD showed lower CD117 expression and higher expression of CD45, CD203c, CD63, CD300a and FcεRI. Within the CMCD population, patients with wasp venom anaphylaxis showed a higher expression of FcεRI as compared to patients without anaphylaxis. Expression of MRGPRX2 on MCs did not differ between the study populations. Basophils are phenotypically and functionally comparable between the different patient populations. Conclusion: Patients with CMCD show an elevated burden of aberrant activated MCs with a significant overexpression of FcεRI in patients with a wasp venom anaphylaxis.


Anaphylaxis , Mastocytosis , Anaphylaxis/metabolism , Bone Marrow , Humans , Immunoglobulin E/metabolism , Mast Cells/metabolism , Mastocytosis/metabolism , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, IgE/metabolism , Receptors, Neuropeptide/metabolism , Tryptases/metabolism , Wasp Venoms/metabolism
7.
Open Forum Infect Dis ; 9(3): ofab624, 2022 Mar.
Article En | MEDLINE | ID: mdl-35146042

BACKGROUND: There is currently no consensus on optimal duration of antibiotic treatment in febrile neutropenia. We report on the clinical impact of implementation of antibiotic de-escalation and discontinuation strategies based on the Fourth European Conference on Infections in Leukaemia (ECIL-4) recommendations in high-risk hematological patients. METHODS: We studied 446 admissions after introduction of an ECIL-4-based protocol (hereafter "ECIL-4 group") in comparison to a historic cohort of 512 admissions. Primary clinical endpoints were the incidence of infectious complications including septic shock, infection-related intensive care unit (ICU) admission, and overall mortality. Secondary endpoints included the incidence of recurrent fever, bacteremia, and antibiotic consumption. RESULTS: Bacteremia occurred more frequently in the ECIL-4 group (46.9% [209/446] vs 30.5% [156/512]; P < .001), without an associated increase in septic shock (4.7% [21/446] vs 4.5% [23/512]; P = .878) or infection-related ICU admission (4.9% [22/446] vs 4.1% [21/512]; P = .424). Overall mortality was significantly lower in the ECIL-4 group (0.7% [3/446] vs 2.7% [14/512]; P = .016), resulting mainly from a decrease in infection-related mortality (0.4% [2/446] vs 1.8% [9/512]; P = .058). Antibiotic consumption was significantly reduced by a median of 2 days on antibiotic therapy (12 vs 14; P = .001) and 7 daily antibiotic doses (17 vs 24; P < .001) per admission period. CONCLUSIONS: Our results support implementation of ECIL-4 recommendations to be both safe and effective based on real-world data in a large high-risk patient population. We found no increase in infectious complications and total antibiotic exposure was significantly reduced.

8.
Cytotherapy ; 24(6): 659-672, 2022 06.
Article En | MEDLINE | ID: mdl-35193826

Regulatory T cells (Tregs) are crucial in inducing and maintaining tolerance. This unique capacity of Tregs, in combination with proof-of-principle in preclinical studies, highlights the potential clinical use of Tregs for the treatment of autoimmunity and transplant rejection. Although proven to be safe and well tolerated in the first clinical trials, only modest clinical results were observed. In this regard, it has been hypothesized that current challenges lie in the development of antigen-specific Tregs. Here, we present an innovative, good manufacturing practices (GMP)-compliant manufacturing protocol for Tregs applicable in a clinical-grade setting, allowing efficient and safe redirection of Treg specificity. First, a soluble polymer conjugated with antibodies to CD3 and CD28 and high amounts of exogenous IL-2 for in vitro Treg expansion resulted in a >70-fold and 185-fold increase of a pure population of CD4+CD127-CD25hi Tregs and CD4+CD127-CD25+CD45RA+ Tregs, respectively. Next, as a proof-of-principle, expanded Tregs were engineered by means of TCR-encoding mRNA electroporation to generate antigen-specific Tregs. This resulted in an expression of the newly introduced TCR in up to 85% of Tregs. Moreover, we did not observe a negative effect on the phenotype of Tregs, as demonstrated by the expression of FOXP3, Helios, CTLA-4 and CCR4, nor on the TSDR methylation status. Importantly, mRNA-engineered Tregs were still able to induce in vitro suppression of effector T cells and produced anti-inflammatory, but not pro-inflammatory, cytokines when activated. In conclusion, our findings demonstrate that high numbers of stable and functional Tregs can be obtained with high purity and successfully engineered for gain of function, in a GMP-compliant manner. We envisage that this clinical-grade protocol will provide solid basis for future clinical application of mRNA-engineered Tregs.


Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Electroporation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/metabolism
9.
J Exp Clin Cancer Res ; 40(1): 213, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-34172082

Immunotherapy is currently under intensive investigation as a potential breakthrough treatment option for glioblastoma. Given the anatomical and immunological complexities surrounding glioblastoma, lymphocytes that infiltrate the brain to develop durable immunity with memory will be key. Polyinosinic:polycytidylic acid, or poly(I:C), and its derivative poly-ICLC could serve as a priming or boosting therapy to unleash lymphocytes and other factors in the (immuno)therapeutic armory against glioblastoma. Here, we present a systematic review on the effects and efficacy of poly(I:C)/poly-ICLC for glioblastoma treatment, ranging from preclinical work on cellular and murine glioblastoma models to reported and ongoing clinical studies. MEDLINE was searched until 15 May 2021 to identify preclinical (glioblastoma cells, murine models) and clinical studies that investigated poly(I:C) or poly-ICLC in glioblastoma. A systematic review approach was conducted according to PRISMA guidelines. ClinicalTrials.gov was queried for ongoing clinical studies. Direct pro-tumorigenic effects of poly(I:C) on glioblastoma cells have not been described. On the contrary, poly(I:C) changes the immunological profile of glioblastoma cells and can also kill them directly. In murine glioblastoma models, poly(I:C) has shown therapeutic relevance as an adjuvant therapy to several treatment modalities, including vaccination and immune checkpoint blockade. Clinically, mostly as an adjuvant to dendritic cell or peptide vaccines, poly-ICLC has been demonstrated to be safe and capable of eliciting immunological activity to boost therapeutic responses. Poly-ICLC could be a valuable tool to enhance immunotherapeutic approaches for glioblastoma. We conclude by proposing several promising combination strategies that might advance glioblastoma immunotherapy and discuss key pre-clinical aspects to improve clinical translation.


Brain Neoplasms/drug therapy , Carboxymethylcellulose Sodium/analogs & derivatives , Glioblastoma/drug therapy , Poly I-C/therapeutic use , Polylysine/analogs & derivatives , Animals , Brain Neoplasms/immunology , Cancer Vaccines/therapeutic use , Carboxymethylcellulose Sodium/therapeutic use , Clinical Trials as Topic , Glioblastoma/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Mice , Polylysine/therapeutic use
10.
J Allergy Clin Immunol Pract ; 9(8): 3176-3187.e3, 2021 08.
Article En | MEDLINE | ID: mdl-33975032

BACKGROUND: Anaphylaxis is frequent in patients suffering from primary mast cell disorders (PMCDs). In patients without mastocytosis in the skin (MIS) and a baseline serum tryptase (bST) less than 30 ng/mL, the diagnosis of PMCD is challenging. In these patients, detection of the KIT D816V mutation in peripheral blood (PB) has been suggested as screening tool for a PMCD. OBJECTIVE: In this study, we investigated whether KIT D816V in PB can contribute to the decision to perform a bone marrow (BM) biopsy in patients with anaphylaxis without MIS and a bST less than 30 ng/mL. METHODS: We selected 74 patients with severe anaphylaxis without MIS and a bST less than 30 ng/mL. All underwent a BM biopsy. KIT D816V mutation was quantified in both PB and BM using digital droplet polymerase chain reaction (ddPCR). RESULTS: Diagnosis of a PMCD was established in 40 patients (54%). Median bST for patients with and without PMCD was, respectively, 9.5 ng/mL (range 4.2-27 ng/mL) and 4.9 ng/mL (range 2.2-20.3 ng/mL) (P <.001). KIT D816V in PB was detected in 16 out of 40 (40%) patients with PMCD. KIT D816V in BM was detected in 22 out of 40 (55%) patients with PMCD. CONCLUSIONS: In patients without MIS and a bST less than < 30 ng/mL who experience anaphylaxis, determination of KIT D816V mutation in PB is of limited help in deciding when to proceed to a BM biopsy. Therefore, KIT D816V in PB mutation analysis should be interpreted together with scoring tools to make a better assessment in identifying patients who should undergo BM biopsy.


Anaphylaxis , Mastocytosis, Systemic , Mastocytosis , Anaphylaxis/diagnosis , Humans , Mast Cells , Mastocytosis, Systemic/diagnosis , Mastocytosis, Systemic/genetics , Mutation , Proto-Oncogene Proteins c-kit/genetics
11.
Pharmaceutics ; 13(3)2021 Mar 16.
Article En | MEDLINE | ID: mdl-33809779

Messenger RNA (mRNA) electroporation is a powerful tool for transient genetic modification of cells. This non-viral method of genetic engineering has been widely used in immunotherapy. Electroporation allows fine-tuning of transfection protocols for each cell type as well as introduction of multiple protein-coding mRNAs at once. As a pioneering group in mRNA electroporation, in this review, we provide an expert overview of the ins and outs of mRNA electroporation, discussing the different parameters involved in mRNA electroporation as well as the production of research-grade and production and application of clinical-grade mRNA for gene transfer in the context of cell-based immunotherapies.

12.
Front Immunol ; 12: 624685, 2021.
Article En | MEDLINE | ID: mdl-33679769

Antigen-specific therapy for multiple sclerosis may lead to a more effective therapy by induction of tolerance to a wide range of myelin-derived antigens without hampering the normal surveillance and effector function of the immune system. Numerous attempts to restore tolerance toward myelin-derived antigens have been made over the past decades, both in animal models of multiple sclerosis and in clinical trials for multiple sclerosis patients. In this review, we will give an overview of the current approaches for antigen-specific therapy that are in clinical development for multiple sclerosis as well provide an insight into the challenges for future antigen-specific treatment strategies for multiple sclerosis.


Adoptive Transfer , Desensitization, Immunologic , Multiple Sclerosis/therapy , Myelin Proteins/administration & dosage , Peptide Fragments/administration & dosage , Vaccination , Vaccines/therapeutic use , Adoptive Transfer/adverse effects , Adoptive Transfer/history , Adoptive Transfer/trends , Animals , Autoimmunity , Desensitization, Immunologic/adverse effects , Desensitization, Immunologic/history , Desensitization, Immunologic/trends , Diffusion of Innovation , Forecasting , History, 20th Century , History, 21st Century , Humans , Immune Tolerance , Multiple Sclerosis/history , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Myelin Proteins/adverse effects , Myelin Proteins/immunology , Myelin Proteins/metabolism , Peptide Fragments/adverse effects , Peptide Fragments/immunology , Peptide Fragments/metabolism , Vaccination/adverse effects , Vaccination/history , Vaccination/trends , Vaccines/adverse effects
13.
Cells ; 9(12)2020 12 17.
Article En | MEDLINE | ID: mdl-33348629

BACKGROUND: When aiming to restore myelin tolerance using antigen-specific treatment approaches in MS, the wide variety of myelin-derived antigens towards which immune responses are targeted in multiple sclerosis (MS) patients needs to be taken into account. Uncertainty remains as to whether the myelin reactivity pattern of a specific MS patient can be predicted based upon the human leukocyte antigen (HLA) class II haplotype of the patient. METHODS: In this study, we analyzed the reactivity towards myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) and proteolipid protein (PLP) peptides using direct interferon (IFN)-γ enzyme-linked immune absorbent spot (ELISPOT). Next, the HLA class II haplotype profile was determined by next-generation sequencing. In doing so, we aimed to evaluate the possible association between the precursor frequency of myelin-reactive T cells and the HLA haplotype. RESULTS: Reactivity towards any of the analyzed peptides could be demonstrated in 65.0% (13/20) of MS patients and in 60.0% (6/10) of healthy controls. At least one of the MS risk alleles HLA-DRB1*15:01, HLA-DQA1*01:02 and HLA-DQB1*06:02 was found in 70.0% (14/20) of patients and in 20.0% (2/10) of healthy controls. No difference in the presence of a myelin-specific response, nor in the frequency of myelin peptide-reactive precursor cells could be detected among carriers and non-carriers of these risk alleles. CONCLUSION: No association between HLA haplotype and myelin reactivity profile was present in our study population. This complicates the development of antigen-specific treatment approaches and implies the need for multi-epitope targeting in an HLA-unrestricted manner to fully address the wide variation in myelin responses and HLA profiles in a heterogeneous group of MS patients.


HLA Antigens/genetics , Multiple Sclerosis, Relapsing-Remitting/pathology , Myelin Basic Protein/metabolism , Adult , Aged , Alleles , Case-Control Studies , Female , Genotype , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , Haplotypes , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/genetics , Myelin Basic Protein/chemistry , Myelin Proteolipid Protein/chemistry , Myelin Proteolipid Protein/metabolism , Myelin-Oligodendrocyte Glycoprotein/chemistry , Myelin-Oligodendrocyte Glycoprotein/metabolism , Peptides/pharmacology , Young Adult
14.
J Hematol Oncol ; 13(1): 164, 2020 12 03.
Article En | MEDLINE | ID: mdl-33272302

BACKGROUND: B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T-cell therapy is an emerging treatment option for multiple myeloma. The aim of this systematic review and meta-analysis was to determine its safety and clinical activity and to identify factors influencing these outcomes. METHODS: We performed a database search using the terms "BCMA," "CAR," and "multiple myeloma" for clinical studies published between 01/01/2015 and 01/01/2020. The methodology is further detailed in PROSPERO (CRD42020125332). RESULTS: Twenty-three different CAR-T-cell products have been used so far in 640 patients. Cytokine release syndrome was observed in 80.3% (69.0-88.2); 10.5% (6.8-16.0) had neurotoxicity. A higher neurotoxicity rate was reported in studies that included more heavily pretreated patients: 19.1% (13.3-26.7; I2 = 45%) versus 2.8% (1.3-6.1; I2 = 0%) (p < 0.0001). The pooled overall response rate was 80.5% (73.5-85.9); complete responses (CR) were observed in 44.8% (35.3-54.6). A pooled CR rate of 71.9% (62.8-79.6; I2 = 0%) was noted in studies using alpaca/llama-based constructs, whereas it was only 18.0% (6.5-41.1; I2 = 67%) in studies that used retroviral vectors for CAR transduction. Median progression-free survival (PFS) was 12.2 (11.4-17.4) months, which compared favorably to the expected PFS of 1.9 (1.5-3.7) months (HR 0.14; p < 0.0001). CONCLUSIONS: Although considerable toxicity was observed, BCMA-targeted CAR-T-cell therapy is highly efficacious even in advanced multiple myeloma. Subgroup analysis confirmed the anticipated inter-study heterogeneity and identified potential factors contributing to safety and efficacy. The results of this meta-analysis may assist the future design of CAR-T-cell studies and lead to optimized BCMA CAR-T-cell products.


B-Cell Maturation Antigen/immunology , Immunotherapy, Adoptive/adverse effects , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/therapeutic use , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Humans , Immunotherapy, Adoptive/methods , Multiple Myeloma/immunology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/immunology , Progression-Free Survival , Receptors, Chimeric Antigen/immunology , Treatment Outcome
15.
Cancers (Basel) ; 12(2)2020 Jan 27.
Article En | MEDLINE | ID: mdl-32012714

Targeting and exploiting the immune system has become a valid alternative to conventional options for treating cancer and infectious disease. Dendritic cells (DCs) take a central place given their role as key orchestrators of immunity. Therapeutic vaccination with autologous DCs aims to stimulate the patient's own immune system to specifically target his/her disease and has proven to be an effective form of immunotherapy with very little toxicity. A great amount of research in this field has concentrated on engineering these DCs through ribonucleic acid (RNA) to improve vaccine efficacy and thereby the historically low response rates. We reviewed in depth the 52 clinical trials that have been published on RNA-engineered DC vaccination, spanning from 2001 to date and reporting on 696 different vaccinated patients. While ambiguity prevents reliable quantification of effects, these trials do provide evidence that RNA-modified DC vaccination can induce objective clinical responses and survival benefit in cancer patients through stimulation of anti-cancer immunity, without significant toxicity. Succinct background knowledge of RNA engineering strategies and concise conclusions from available clinical and recent preclinical evidence will help guide future research in the larger domain of DC immunotherapy.

16.
Cancers (Basel) ; 12(2)2020 Jan 21.
Article En | MEDLINE | ID: mdl-31972992

The functional avidity of T-cell receptor (TCR)-engineered T cells towards their cognate epitope plays a crucial role in successfully targeting and killing tumor cells expressing the tumor-associated antigen (TAA). When evaluating in vitro functional T-cell avidity, an important aspect that is often neglected is the antigen-presenting cell (APC) used in the assay. Cell-based models for antigen-presentation, such as tumor cell lines, represent a valid alternative to autologous APCs due to their availability, off-the-shelf capabilities, and the broad range of possibilities for modification via DNA or messenger RNA (mRNA) transfection. To find a valuable model APC for in vitro validation of TAA Wilms' tumor 1 (WT1)-specific TCRs, we tested four different WT1 peptide-pulsed HLA-A2+ tumor cell lines commonly used in T-cell stimulation assays. We found the multiple myeloma cell line U266 to be a suitable model APC to evaluate differences in mean functional avidity (EC50) values of transgenic TCRs following transfection in 2D3 Jurkat T cells. Next, to assess the dose-dependent antigen-specific responsiveness of WT1 TCR-engineered 2D3 T cells to endogenously processed epitopes, we electroporated U266 cells with different amounts of full-length antigen WT1 mRNA. Finally, we analyzed the functional avidity of WT1 TCR-transfected primary CD8 T cells towards WT1 mRNA-electroporated U266 cells. In this study, we demonstrate that both the APC and the antigen loading method (peptide pulsing versus full-length mRNA transfection) to analyze T-cell functional avidity have a significant impact on the EC50 values of a given TCR. For rapid assessment of the functional avidity of a cloned TCR towards its endogenously processed MHC I-restricted epitope, we showcase that the TAA mRNA-transfected U266 cell line is a suitable and versatile model APC.

17.
Cancers (Basel) ; 11(9)2019 Sep 19.
Article En | MEDLINE | ID: mdl-31546858

Dendritic cell-based and other vaccination strategies that use the patient's own immune system for the treatment of cancer are gaining momentum. Most studies of therapeutic cancer vaccination have been performed in adults. However, since cancer is one of the leading causes of death among children past infancy in the Western world, the hope is that this form of active specific immunotherapy can play an important role in the pediatric population as well. Since children have more vigorous and adaptable immune systems than adults, therapeutic cancer vaccines are expected to have a better chance of creating protective immunity and preventing cancer recurrence in pediatric patients. Moreover, in contrast to conventional cancer treatments such as chemotherapy, therapeutic cancer vaccines are designed to specifically target tumor cells and not healthy cells or tissues. This reduces the likelihood of side effects, which is an important asset in this vulnerable patient population. In this review, we present an overview of the different therapeutic cancer vaccines that have been studied in the pediatric population, with a main focus on dendritic cell-based strategies. In addition, new approaches that are currently being investigated in clinical trials are discussed to provide guidance for further improvement and optimization of pediatric cancer vaccines.

18.
Front Immunol ; 10: 1613, 2019.
Article En | MEDLINE | ID: mdl-31379824

Chimeric antigen receptor (CAR)-modified T cell therapy is a rapidly emerging immunotherapeutic approach that is revolutionizing cancer treatment. The impressive clinical results obtained with CAR-T cell therapy in patients with acute lymphoblastic leukemia and lymphoma have fueled the development of CAR-T cells targeting other malignancies, including multiple myeloma (MM). The field of CAR-T cell therapy for MM is still in its infancy, but remains promising. To date, most studies have been performed with B cell maturation antigen (BCMA)-targeted CARs, for which high response rates have been obtained in early-phase clinical trials. However, responses are usually temporary, and relapses have frequently been observed. One of the major reasons for relapse is the loss or downregulation of BCMA expression following CAR-T therapy. This has fostered a search for alternative target antigens that are expressed on the MM cell surface. In this review, we provide an overview of myeloma target antigens other than BCMA that are currently being evaluated in pre-clinical and clinical studies.


B-Cell Maturation Antigen/immunology , Multiple Myeloma/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Cell- and Tissue-Based Therapy/methods , Humans , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology
19.
J Neuroinflammation ; 16(1): 167, 2019 Aug 15.
Article En | MEDLINE | ID: mdl-31416452

BACKGROUND: Although effective in reducing relapse rate and delaying progression, current therapies for multiple sclerosis (MS) do not completely halt disease progression. T cell autoimmunity to myelin antigens is considered one of the main mechanisms driving MS. It is characterized by autoreactivity to disease-initiating myelin antigen epitope(s), followed by a cascade of epitope spreading, which are both strongly patient-dependent. Targeting a variety of MS-associated antigens by myelin antigen-presenting tolerogenic dendritic cells (tolDC) is a promising treatment strategy to re-establish tolerance in MS. Electroporation with mRNA encoding myelin proteins is an innovative technique to load tolDC with the full spectrum of naturally processed myelin-derived epitopes. METHODS: In this study, we generated murine tolDC presenting myelin oligodendrocyte glycoprotein (MOG) using mRNA electroporation and we assessed the efficacy of MOG mRNA-electroporated tolDC to dampen pathogenic T cell responses in experimental autoimmune encephalomyelitis (EAE). For this, MOG35-55-immunized C57BL/6 mice were injected intravenously at days 13, 17, and 21 post-disease induction with 1α,25-dihydroxyvitamin D3-treated tolDC electroporated with MOG-encoding mRNA. Mice were scored daily for signs of paralysis. At day 25, myelin reactivity was evaluated following restimulation of splenocytes with myelin-derived epitopes. Ex vivo magnetic resonance imaging (MRI) was performed to assess spinal cord inflammatory lesion load. RESULTS: Treatment of MOG35-55-immunized C57BL/6 mice with MOG mRNA-electroporated or MOG35-55-pulsed tolDC led to a stabilization of the EAE clinical score from the first administration onwards, whereas it worsened in mice treated with non-antigen-loaded tolDC or with vehicle only. In addition, MOG35-55-specific pro-inflammatory pathogenic T cell responses and myelin antigen epitope spreading were inhibited in the peripheral immune system of tolDC-treated mice. Finally, magnetic resonance imaging analysis of hyperintense spots along the spinal cord was in line with the clinical score. CONCLUSIONS: Electroporation with mRNA is an efficient and versatile tool to generate myelin-presenting tolDC that are capable to stabilize the clinical score in EAE. These results pave the way for further research into mRNA-electroporated tolDC treatment as a patient-tailored therapy for MS.


Dendritic Cells/metabolism , Electroporation/methods , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/therapy , Myelin-Oligodendrocyte Glycoprotein/metabolism , RNA, Messenger/metabolism , Animals , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Immune Tolerance/physiology , K562 Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , RNA, Messenger/administration & dosage , RNA, Messenger/immunology
20.
Cancers (Basel) ; 11(7)2019 Jul 22.
Article En | MEDLINE | ID: mdl-31336622

A particularly interesting marker to identify anti-tumor immune cells is the neural cell adhesion molecule (NCAM), also known as cluster of differentiation (CD)56. Namely, hematopoietic expression of CD56 seems to be confined to powerful effector immune cells. Here, we sought to elucidate its role on various killer immune cells. First, we identified the high motility NCAM-120 molecule to be the main isoform expressed by immune cells. Next, through neutralization of surface CD56, we were able to (1) demonstrate the direct involvement of CD56 in tumor cell lysis exerted by CD56-expressing killer cells, such as natural killer cells, gamma delta (γδ) T cells, and interleukin (IL)-15-cultured dendritic cells (DCs), and (2) reveal a putative crosstalk mechanism between IL-15 DCs and CD8 T cells, suggesting CD56 as a co-stimulatory molecule in their cell-to-cell contact. Moreover, by means of a proximity ligation assay, we visualized the CD56 homophilic interaction among cancer cells and between immune cells and cancer cells. Finally, by blocking the mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase (PI3K)-Akt pathway, we showed that IL-15 stimulation directly led to CD56 upregulation. In conclusion, these results underscore the previously neglected importance of CD56 expression on immune cells, benefiting current and future immune therapeutic options.

...