Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838019

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Membrane Glycoproteins , Teichoic Acids , Teichoic Acids/metabolism , Teichoic Acids/chemistry , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/chemistry , Lactobacillus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Models, Molecular , Lactobacillus acidophilus/metabolism , Lactobacillus acidophilus/genetics
2.
ACS Cent Sci ; 8(10): 1383-1392, 2022 Oct 26.
Article En | MEDLINE | ID: mdl-36313161

Wall teichoic acids (WTAs) are glycopolymers decorating the surface of Gram-positive bacteria and potential targets for antibody-mediated treatments against Staphylococcus aureus, including methicillin-resistant (MRSA) strains. Through a combination of glycan microarray, synthetic chemistry, crystallography, NMR, and computational studies, we unraveled the molecular and structural details of fully defined synthetic WTA fragments recognized by previously described monoclonal antibodies (mAbs 4461 and 4497). Our results unveiled the structural requirements for the discriminatory recognition of α- and ß-GlcNAc-modified WTA glycoforms by the complementarity-determining regions (CDRs) of the heavy and light chains of the mAbs. Both mAbs interacted not only with the sugar moiety but also with the phosphate groups as well as residues in the ribitol phosphate (RboP) units of the WTA backbone, highlighting their significant role in ligand specificity. Using elongated WTA fragments, containing two sugar modifications, we also demonstrated that the internal carbohydrate moiety of α-GlcNAc-modified WTA is preferentially accommodated in the binding pocket of mAb 4461 with respect to the terminal moiety. Our results also explained the recently documented cross-reactivity of mAb 4497 for ß-1,3/ß-1,4-GlcNAc-modified WTA, revealing that the flexibility of the RboP backbone is crucial to allow positioning of both glycans in the antibody binding pocket.

3.
RSC Chem Biol ; 2(1): 187-191, 2021 Feb 01.
Article En | MEDLINE | ID: mdl-34458781

Lipoteichoic acids (LTAs) have been addressed as possible antigen candidates for vaccine development against several opportunistic Gram-positive pathogens. The study of structure-immunogenicity relationship represents a challenge due to the heterogenicity of LTA extracted from native sources. LTAs are built up from glycerol phosphate (GroP) repeating units and they can be substituted at the C-2-OH with carbohydrate appendages or d-alanine residues. The substitution pattern, but also the absolute chirality of the GroP residues can impact the interaction with chiral biomolecules including antibodies and biosynthesis enzymes. We have generated a set of diastereomeric GroP hexamers bearing a glucosyl modification at one of the residues. The chirality of the glycerol building block had an important impact on the stereoselectivity of the glycosylation reaction between the glycosyl donor and the glycerol C-2-OH acceptor. The GroP C-2-chirality also played an important role in the interaction with TA recognizing antibodies. These findings have important implications for the design and synthesis of synthetic TA fragments for diagnostic and therapeutic applications.

4.
ACS Chem Biol ; 16(8): 1344-1349, 2021 08 20.
Article En | MEDLINE | ID: mdl-34255482

Glycerol phosphate (GroP)-based teichoic acids (TAs) are antigenic cell-wall components found in both enterococcus and staphylococcus species. Their immunogenicity has been explored using both native and synthetic structures, but no details have yet been reported on the structural basis of their interaction with antibodies. This work represents the first case study in which a monoclonal antibody, generated against a synthetic TA, was developed and employed for molecular-level binding analysis using TA microarrays, ELISA, SPR-analyses, and STD-NMR spectroscopy. Our findings show that the number and the chirality of the GroP residues are crucial for interaction and that the sugar appendage contributes to the presentation of the backbone to the binding site of the antibody.


Antibodies, Monoclonal, Murine-Derived/metabolism , Epitopes/metabolism , Glycerophosphates/metabolism , Teichoic Acids/metabolism , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Glycerophosphates/chemistry , Glycerophosphates/immunology , Mice , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Teichoic Acids/chemistry , Teichoic Acids/immunology
5.
Org Biomol Chem ; 18(11): 2038-2050, 2020 03 18.
Article En | MEDLINE | ID: mdl-32141465

The stereoselective construction of 1,2-cis-glycosidic linkages is key in the assembly of biologically relevant glycans, but remains a synthetic challenge. Reagent-controlled glycosylation methodologies, in which external nucleophiles are employed to modulate the reactivity of the glycosylation system, have become powerful means for the construction of 1,2-cis-glycosidic linkages. Here we establish that nucleophilic additives can support the construction of α-1,2-glucans, and apply our findings in the construction of a d-alanine kojibiose functionalized glycerol phosphate teichoic acid fragment. This latter molecule can be found in the cell wall of the opportunistic Gram-positive bacterium, Enterococcus faecalis and represents a structural element that can possibly be used in the development of therapeutic vaccines and diagnostic tools.


Glucans/chemical synthesis , Teichoic Acids/chemistry , Alanine , Cell Wall/chemistry , Disaccharides , Enterococcus faecalis/ultrastructure , Glucans/chemistry , Glycosylation , Indicators and Reagents , Stereoisomerism
6.
Drug Discov Today Technol ; 38: 35-43, 2020 Dec.
Article En | MEDLINE | ID: mdl-34895639

Glycopolymers are found surrounding the outer layer of many bacterial species. The first uses as immunogenic component in vaccines are reported since the beginning of the XX century, but it is only in the last decades that glycoconjugate based vaccines have been effectively applied for controlling and preventing several infectious diseases, such as H. influenzae type b (Hib), N. meningitidis, S. pneumoniae or group B Streptococcus. Methicillin resistant S. aureus (MRSA) strains has been appointed by the WHO as one of those pathogens, for which new treatments are urgently needed. Herein we present an overview of the carbohydrate-based cell wall polymers associated with different S. aureus strains and the related affords to deliver well-defined fragments through synthetic chemistry.


Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Carbohydrates , Cell Wall
7.
Chemistry ; 24(16): 4014-4018, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29389054

Teichoic acids (TAs) are key components of the Gram-positive bacterial cell wall that are composed of alditol phosphate repeating units, decorated with alanine or carbohydrate appendages. Because of their microhetereogeneity, pure well-defined TAs for biological or immunological evaluation cannot be obtained from natural sources. We present here a streamlined automated solid-phase synthesis approach for the rapid generation of well-defined glycosylated, glycerol-based TA oligomers. Building on the use of a "universal" linker system and fluorous tag purification strategy, a library of glycerolphosphate pentadecamers, decorated with various carbohydrate appendages, is generated. These are used to create a structurally diverse TA-microarray, which is used to reveal, for the first time, the binding preferences of anti-LTA (lipoteichoic acids) antibodies at the molecular level.


Teichoic Acids/chemical synthesis , Alanine/metabolism , Cell Wall/chemistry , Glycosylation , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/metabolism , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Molecular Structure , Solid-Phase Synthesis Techniques , Sugar Alcohols/chemistry , Teichoic Acids/chemistry , Teichoic Acids/immunology
...