Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 18(1): 213, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537066

RESUMEN

BACKGROUND: Inflammation in the central nervous system (CNS) is observed in many neurological disorders. Nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling plays an essential role in modulating neuroinflammation. CYR119 is a CNS-penetrant sGC stimulator that amplifies endogenous NO-sGC-cGMP signaling. We evaluated target engagement and the effects of CYR119 on markers of neuroinflammation in vitro in mouse microglial cells and in vivo in quinolinic acid (QA)-induced and high-fat diet-induced rodent neuroinflammation models. METHODS: Target engagement was verified in human embryonic kidney (HEK) cells, rat primary neurons, mouse SIM-A9 cells, and in rats by measuring changes in cGMP and downstream targets of sGC signaling [phosphorylated vasodilator-stimulated phosphoprotein (pVASP), phosphorylated cAMP-response element binding (pCREB)]. In SIM-A9 cells stimulated with lipopolysaccharides (LPS), markers of inflammation were measured when cells were treated with or without CYR119. In rats, microinjections of QA and vehicle were administered into the right and left hemispheres of striatum, respectively, and then rats were dosed daily with either CYR119 (10 mg/kg) or vehicle for 7 days. The activation of microglia [ionized calcium binding adaptor molecule 1 (Iba1)] and astrocytes [glial fibrillary acidic protein (GFAP)] was measured by immunohistochemistry. Diet-induced obese (DIO) mice were treated daily with CYR119 (10 mg/kg) for 6 weeks, after which inflammatory genetic markers were analyzed in the prefrontal cortex. RESULTS: In vitro, CYR119 synergized with exogenous NO to increase the production of cGMP in HEK cells and in primary rat neuronal cell cultures. In primary neurons, CYR119 stimulated sGC, resulting in accumulation of cGMP and phosphorylation of CREB, likely through the activation of protein kinase G (PKG). CYR119 attenuated LPS-induced elevation of interleukin 6 (IL-6) and tumor necrosis factor (TNF) in mouse microglial cells. Following oral dosing in rats, CYR119 crossed the blood-brain barrier (BBB) and stimulated an increase in cGMP levels in the cerebral spinal fluid (CSF). In addition, levels of proinflammatory markers associated with QA administration or high-fat diet feeding were lower in rodents treated with CYR119 than in those treated with vehicle. CONCLUSIONS: These data suggest that sGC stimulation could provide neuroprotective effects by attenuating inflammatory responses in nonclinical models of neuroinflammation.


Asunto(s)
Antiinflamatorios/metabolismo , Sistema Nervioso Central/metabolismo , GMP Cíclico/metabolismo , Mediadores de Inflamación/metabolismo , Neuronas/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Animales , Antiinflamatorios/farmacología , Biomarcadores/metabolismo , Células Cultivadas , Sistema Nervioso Central/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
Front Pharmacol ; 12: 656561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108877

RESUMEN

Effective treatments for neurodegenerative diseases remain elusive and are critically needed since the burden of these diseases increases across an aging global population. Nitric oxide (NO) is a gasotransmitter that binds to soluble guanylate cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP). Impairment of this pathway has been demonstrated in neurodegenerative diseases. Normalizing deficient NO-cGMP signaling could address multiple pathophysiological features of neurodegenerative diseases. sGC stimulators are small molecules that synergize with NO, activate sGC, and increase cGMP production. Many systemic sGC stimulators have been characterized and advanced into clinical development for a variety of non-central nervous system (CNS) pathologies. Here, we disclose the discovery of CY6463, the first brain-penetrant sGC stimulator in clinical development for the treatment of neurodegenerative diseases, and demonstrate its ability to improve neuronal activity, mediate neuroprotection, and increase cognitive performance in preclinical models. In several cellular assays, CY6463 was demonstrated to be a potent stimulator of sGC. In agreement with the known effects of sGC stimulation in the vasculature, CY6463 elicits decreases in blood pressure in both rats and mice. Relative to a non-CNS penetrant sGC stimulator, rodents treated with CY6463 had higher cGMP levels in cerebrospinal fluid (CSF), functional-magnetic-resonance-imaging-blood-oxygen-level-dependent (fMRI-BOLD) signals, and cortical electroencephalographic (EEG) gamma-band oscillatory power. Additionally, CY6463 improved cognitive performance in a model of cognitive disruption induced by the administration of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. In models of neurodegeneration, CY6463 treatment increased long-term potentiation (LTP) in hippocampal slices from a Huntington's disease mouse model and decreased the loss of dendritic spines in aged and Alzheimer's disease mouse models. In a model of diet-induced obesity, CY6463 reduced markers of inflammation in the plasma. Furthermore, CY6463 elicited an additive increase in cortical gamma-band oscillatory power when co-administered with donepezil: the standard of care in Alzheimer's disease. Together, these data support the clinical development of CY6463 as a novel treatment for neurodegenerative disorders.

3.
Br J Pharmacol ; 178(17): 3463-3475, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33864386

RESUMEN

BACKGROUND AND PURPOSE: Reduced bioavailability of NO, a hallmark of sickle cell disease (SCD), contributes to intravascular inflammation, vasoconstriction, vaso-occlusion and organ damage observed in SCD patients. Soluble guanylyl cyclase (sGC) catalyses synthesis of cGMP in response to NO. cGMP-amplifying agents, including NO donors and phosphodiesterase 9 inhibitors, alleviate TNFα-induced inflammation in wild-type C57BL/6 mice and in 'humanised' mouse models of SCD. EXPERIMENTAL APPROACH: Effects of the sGC stimulator olinciguat on intravascular inflammation and renal injury were studied in acute (C57BL6 and Berkeley mice) and chronic (Townes mice) mouse models of TNFα-induced and systemic inflammation associated with SCD. KEY RESULTS: Acute treatment with olinciguat attenuated increases in plasma biomarkers of endothelial cell activation and leukocyte-endothelial cell interactions in TNFα-challenged mice. Co-treatment with hydroxyurea, an FDA-approved SCD therapeutic agent, further augmented the anti-inflammatory effect of olinciguat. In the Berkeley mouse model of TNFα-induced vaso-occlusive crisis, a single dose of olinciguat attenuated leukocyte-endothelial cell interactions, improved blood flow and prolonged survival time compared to vehicle-treated mice. In Townes SCD mice, plasma biomarkers of inflammation and endothelial cell activation were lower in olinciguat- than in vehicle-treated mice. In addition, kidney mass, water consumption, 24-h urine excretion, plasma levels of cystatin C and urinary excretion of N-acetyl-ß-d-glucosaminidase and neutrophil gelatinase-associated lipocalin were lower in Townes mice treated with olinciguat than in vehicle-treated mice. CONCLUSION AND IMPLICATIONS: Our results suggest that the sGC stimulator olinciguat attenuates inflammation, vaso-occlusion and kidney injury in mouse models of SCD and systemic inflammation.


Asunto(s)
Anemia de Células Falciformes , Enfermedades Vasculares , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Guanilil Ciclasa Soluble
4.
Bioorg Med Chem Lett ; 40: 127886, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33662540

RESUMEN

Soluble guanylate cyclase (sGC) is a clinically validated therapeutic target in the treatment of pulmonary hypertension. Modulators of sGC have the potential to treat diseases that are affected by dysregulation of the NO-sGC-cGMP signal transduction pathway. This letter describes the SAR efforts that led to the discovery of CYR715, a novel carboxylic acid-containing sGC stimulator, with an improved metabolic profile relative to our previously described stimulator, IWP-051. CYR715 addressed potential idiosyncratic drug toxicity (IDT) liabilities associated with the formation of reactive, migrating acyl glucuronides (AG) found in related carboxylic acid-containing analogs and demonstrated high oral bioavailability in rat and dose-dependent hemodynamic pharmacology in normotensive Sprague-Dawley rats.


Asunto(s)
Ácidos Carboxílicos/química , Glucurónidos/química , Hipertensión Pulmonar/tratamiento farmacológico , Guanilil Ciclasa Soluble/metabolismo , Vasodilatadores/química , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Glucurónidos/administración & dosificación , Glucurónidos/farmacocinética , Humanos , Masculino , Metaboloma , Modelos Moleculares , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Unión Proteica , Ratas Sprague-Dawley , Transducción de Señal , Relación Estructura-Actividad , Vasodilatadores/administración & dosificación , Vasodilatadores/farmacocinética
5.
Front Pharmacol ; 11: 419, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322204

RESUMEN

Nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5' GMP (cGMP) signaling plays a central role in regulation of diverse processes including smooth muscle relaxation, inflammation, and fibrosis. sGC is activated by the short-lived physiologic mediator NO. sGC stimulators are small-molecule compounds that directly bind to sGC to enhance NO-mediated cGMP signaling. Olinciguat, (R)-3,3,3-trifluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl)pyrimidin-4-yl)amino)methyl)-2-hydroxypropanamide, is a new sGC stimulator currently in Phase 2 clinical development. To understand the potential clinical utility of olinciguat, we studied its pharmacokinetics, tissue distribution, and pharmacologic effects in preclinical models. Olinciguat relaxed human vascular smooth muscle and was a potent inhibitor of vascular smooth muscle proliferation in vitro. These antiproliferative effects were potentiated by the phosphodiesterase 5 inhibitor tadalafil, which did not inhibit vascular smooth muscle proliferation on its own. Olinciguat was orally bioavailable and predominantly cleared by the liver in rats. In a rat whole body autoradiography study, olinciguat-derived radioactivity in most tissues was comparable to plasma levels, indicating a balanced distribution between vascular and extravascular compartments. Olinciguat was explored in rodent models to study its effects on the vasculature, the heart, the kidneys, metabolism, and inflammation. Olinciguat reduced blood pressure in normotensive and hypertensive rats. Olinciguat was cardioprotective in the Dahl rat salt-sensitive hypertensive heart failure model. In the rat ZSF1 model of diabetic nephropathy and metabolic syndrome, olinciguat was renoprotective and associated with lower circulating glucose, cholesterol, and triglycerides. In a mouse TNFα-induced inflammation model, olinciguat treatment was associated with lower levels of endothelial and leukocyte-derived soluble adhesion molecules. The pharmacological features of olinciguat suggest that it may have broad therapeutic potential and that it may be suited for diseases that have both vascular and extravascular pathologies.

6.
Proc Natl Acad Sci U S A ; 116(22): 11057-11062, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085647

RESUMEN

Endothelial dysfunction and reduced nitric oxide (NO) signaling are a key element of the pathophysiology of nonalcoholic steatohepatitis (NASH). Stimulators of soluble guanylate cyclase (sGC) enhance NO signaling; have been shown preclinically to reduce inflammation, fibrosis, and steatosis; and thus have been proposed as potential therapies for NASH and fibrotic liver diseases. Praliciguat, an oral sGC stimulator with extensive distribution to the liver, was used to explore the role of this signaling pathway in NASH. We found that sGC is expressed in hepatic stellate cells and stellate-derived myofibroblasts, but not in hepatocytes. Praliciguat acted directly on isolated hepatic stellate cells to inhibit fibrotic and inflammatory signaling potentially through regulation of AMPK and SMAD7. Using in vivo microdialysis, we demonstrated stimulation of the NO-sGC pathway by praliciguat in both healthy and fibrotic livers. In preclinical models of NASH, praliciguat treatment was associated with lower levels of liver fibrosis and lower expression of fibrotic and inflammatory biomarkers. Praliciguat treatment lowered hepatic steatosis and plasma cholesterol levels. The antiinflammatory and antifibrotic effects of praliciguat were recapitulated in human microtissues in vitro. These data provide a plausible cellular basis for the mechanism of action of sGC stimulators and suggest the potential therapeutic utility of praliciguat in the treatment of NASH.


Asunto(s)
Antiinflamatorios/farmacología , Activadores de Enzimas/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Guanilil Ciclasa Soluble , Animales , Antiinflamatorios/uso terapéutico , Células Cultivadas , Técnicas de Cocultivo , Humanos , Ratones , Óxido Nítrico/metabolismo , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo
7.
J Pharmacol Exp Ther ; 365(3): 664-675, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29643251

RESUMEN

Soluble guanylate cyclase (sGC), a key signal-transduction enzyme, increases the conversion of guanosine-5'-triphosphate to cGMP upon binding of nitric oxide (NO). Endothelial dysfunction and/or reduced NO signaling have been implicated in cardiovascular disease pathogenesis and complications of diabetes and have been associated with other disease states and aging. Soluble guanylate cyclase (sGC) stimulators are small-molecule drugs that bind sGC and enhance NO-mediated cGMP signaling. The pharmacological characterization of IW-1973 [1,1,1,3,3,3-hexafluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl) pyrimidin-4-yl)amino)methyl)propan-2-ol], a novel clinical-stage sGC stimulator under clinical investigation for treatment of heart failure with preserved ejection fraction and diabetic nephropathy, is described. In the presence of NO, IW-1973 stimulated sGC in a human purified enzyme assay and a HEK-293 whole cell assay. sGC stimulation by IW-1973 in cells was associated with increased phosphorylation of vasodilator-stimulated phosphoprotein. IW-1973, at doses of 1-10 mg/kg, significantly lowered blood pressure in normotensive and spontaneously hypertensive rats. In a Dahl salt-sensitive hypertension model, IW-1973 significantly reduced blood pressure, inflammatory cytokine levels, and renal disease markers, including proteinuria and renal fibrotic gene expression. The results were affirmed in mouse lipopolysaccharide-induced inflammation and rat unilateral ureteral obstruction renal fibrosis models. A quantitative whole-body autoradiography study of IW-1973 revealed extensive tissue distribution and pharmacokinetic studies showed a large volume of distribution and a profile consistent with predicted once-a-day dosing in humans. In summary, IW-1973 is a potent, orally available sGC stimulator that exhibits renoprotective, anti-inflammatory, and antifibrotic effects in nonclinical models.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/farmacocinética , Antihipertensivos/farmacología , Antihipertensivos/farmacocinética , Pirazoles/farmacología , Pirazoles/farmacocinética , Pirimidinas/farmacología , Pirimidinas/farmacocinética , Guanilil Ciclasa Soluble/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Antihipertensivos/uso terapéutico , Arterias/efectos de los fármacos , Arterias/fisiología , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Fibrosis , Células HEK293 , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Ratones , Óxido Nítrico/metabolismo , Proteinuria/tratamiento farmacológico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Ratas , Transducción de Señal/efectos de los fármacos , Distribución Tisular , Vasodilatación/efectos de los fármacos
8.
J Biol Chem ; 293(5): 1850-1864, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222330

RESUMEN

Soluble guanylyl cyclase (sGC) is the receptor for nitric oxide and a highly sought-after therapeutic target for the management of cardiovascular diseases. New compounds that stimulate sGC show clinical promise, but where these stimulator compounds bind and how they function remains unknown. Here, using a photolyzable diazirine derivative of a novel stimulator compound, IWP-051, and MS analysis, we localized drug binding to the ß1 heme domain of sGC proteins from the hawkmoth Manduca sexta and from human. Covalent attachments to the stimulator were also identified in bacterial homologs of the sGC heme domain, referred to as H-NOX domains, including those from Nostoc sp. PCC 7120, Shewanella oneidensis, Shewanella woodyi, and Clostridium botulinum, indicating that the binding site is highly conserved. The identification of photoaffinity-labeled peptides was aided by a signature MS fragmentation pattern of general applicability for unequivocal identification of covalently attached compounds. Using NMR, we also examined stimulator binding to sGC from M. sexta and bacterial H-NOX homologs. These data indicated that stimulators bind to a conserved cleft between two subdomains in the sGC heme domain. L12W/T48W substitutions within the binding pocket resulted in a 9-fold decrease in drug response, suggesting that the bulkier tryptophan residues directly block stimulator binding. The localization of stimulator binding to the sGC heme domain reported here resolves the longstanding question of where stimulators bind and provides a path forward for drug discovery.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Hemo/química , Mutación Missense , Guanilil Ciclasa Soluble/química , Sustitución de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/genética , Sitios de Unión , Hemo/genética , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Guanilil Ciclasa Soluble/genética
9.
Invest Ophthalmol Vis Sci ; 57(3): 1317-26, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26998718

RESUMEN

PURPOSE: The nitric oxide (NO)-cyclic guanosine-3',5'-monophosphate (cGMP) pathway regulates aqueous humor outflow and therefore, intraocular pressure. We investigated the pharmacologic effects of the soluble guanylate cyclase (sGC) stimulator IWP-953 on primary human trabecular meshwork (HTM) cells and conventional outflow facility in mouse eyes. METHODS: Cyclic GMP levels were determined in vitro in HEK-293 cells and four HTM cell strains (HTM120/HTM123: predominantly myofibroblast-like phenotype, HTM130/HTM141: predominantly endothelial-like phenotype), and in HTM cell culture supernatants. Conventional outflow facility was measured following intracameral injection of IWP-953 or DETA-NO using a computerized pressure-controlled perfusion system in enucleated mouse eyes ex vivo. RESULTS: IWP-953 markedly stimulated cGMP production in HEK-293 cells in the presence and absence of DETA-NO (half maximal effective concentrations: 17 nM, 9.5 µM). Similarly, IWP-953 stimulated cGMP production in myofibroblast-like HTM120 and HTM123 cells, an effect that was greatly amplified by the presence of DETA-NO. In contrast, IWP-953 stimulation of cGMP production in endothelial-like HTM130 and HTM141 cells was observed, but was markedly less prominent than in HTM120 and HTM123 cells. Notably, cGMP was found in all HTM culture supernatants, following IWP-953/DETA-NO stimulation. In paired enucleated mouse eyes, IWP-953 at 10, 30, 60, and 100 µM concentration-dependently increased outflow facility. This effect (89.5%) was maximal at 100 µM (P = 0.002) and in magnitude comparable to DETA-NO at 100 µM (97.5% increase, P = 0.030). CONCLUSIONS: These data indicate that IWP-953, via modulation of the sGC-cGMP pathway, increases aqueous outflow facility in mouse eyes, suggesting therapeutic potential for sGC stimulators as novel ocular hypotensive drugs.


Asunto(s)
Humor Acuoso/química , GMP Cíclico/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Guanilato Ciclasa/efectos de los fármacos , Presión Intraocular/efectos de los fármacos , Malla Trabecular/metabolismo , Adulto , Animales , Células Cultivadas , Preescolar , Modelos Animales de Enfermedad , Glaucoma de Ángulo Abierto/patología , Glaucoma de Ángulo Abierto/fisiopatología , Guanilato Ciclasa/metabolismo , Humanos , Lactante , Ratones , Ratones Endogámicos C57BL , Malla Trabecular/patología
10.
PLoS One ; 10(11): e0141330, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26555695

RESUMEN

Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology.


Asunto(s)
Interleucina-6/antagonistas & inhibidores , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Diseño de Fármacos , Semivida , Humanos , Hibridomas , Interleucina-6/química , Interleucina-6/metabolismo , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Modelos Moleculares , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptores de Interleucina-6/química , Proteínas Recombinantes/farmacología , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Células U937
11.
Pain ; 154(9): 1820-1830, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23748116

RESUMEN

The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS- and restraint stress-induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity.


Asunto(s)
Guanilato Ciclasa/metabolismo , Péptidos Natriuréticos/metabolismo , Transducción de Señal/fisiología , Dolor Visceral/metabolismo , Acetilcolina/farmacología , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacología , Adenocarcinoma/patología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Colitis/inducido químicamente , Colitis/complicaciones , Colon/efectos de los fármacos , Colon/metabolismo , Neoplasias Colorrectales/patología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica , Femenino , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/etiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hiperalgesia/fisiopatología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Morfina/uso terapéutico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Péptidos Natriuréticos/uso terapéutico , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Peroxidasa/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Restricción Física , Ácido Trinitrobencenosulfónico/toxicidad , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/etiología
12.
Bioorg Med Chem Lett ; 23(2): 472-5, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23245510

RESUMEN

In the quest to discover a potent and selective class of direct agonists to the sphingosine-1-phosphate receptor, we explored the carboxylate functional group as a replacement to previously reported lead phosphates. This has led to the discovery of potent and selective direct agonists with moderate to substantial in vivo lymphopenia. The previously reported selectivity enhancing moiety (SEM) and selectivity enhancing orientation (SEO) in the phenylamide and phenylimidazole scaffolds were crucial to obtaining selectivity for S1P receptor subtype 1 over 3.


Asunto(s)
Aminoácidos/química , Aminoácidos/farmacología , Linfopenia , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/química , Administración Oral , Aminoácidos/administración & dosificación , Animales , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Unión Proteica/efectos de los fármacos , Receptores de Lisoesfingolípidos/metabolismo
13.
ACS Med Chem Lett ; 4(10): 942-7, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24900589

RESUMEN

To develop effective oral treatment for multiple sclerosis (MS), we discovered a series of alkyl-substituted biaryl amino alcohols as selective S1P1 modulators. One exemplar is (S)-2-amino-2-(5-(4-(octyloxy)-3-(trifluoromethyl)phenyl)-1,3,4-thiadiazol-2-yl)propan-1-ol (10, GSK1842799). Upon phosphorylation, the compound (10-P) showed subnanomole S1P1 agonist activity with >1000× selectivity over S1P3. The alcohol 10 demonstrated good oral bioavailability and rapid in vivo conversion to 10-P. Dosed orally at 0.1 mg/kg, 10 significantly reduced blood lymphocyte counts 6 h postdose, and at 3 mg/kg, 10 achieved efficacy equivalent to FTY720 in the mouse EAE model of MS. Further pharmacokinetic/pharmacodynamic (PK/PD) study with cynomolgus monkeys indicated that, after oral dosing of 10 at 3.8 mg/kg, the active phosphate reached plasma levels that are comparable to FTY-720 phosphate (FTY-P) revealed in human clinical pharmacokinetics studies. On the basis of the favorable in vitro ADME and in vivo PK/PD properties as well as broad toxicology evaluations, compound 10 (GSK1842799) was selected as a candidate for further clinical development.

14.
Bioorg Med Chem Lett ; 20(8): 2520-4, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20304639

RESUMEN

In pursuit of a potent and highly selective sphingosine-1-phosphate receptor agonists with an improved in vivo conversion of the precursor to the active phospho-drug, we have utilized previously reported phenylamide and phenylimidazole scaffolds to identify a selectivity enhancing moiety (SEM) and selectivity enhancing orientation (SEO) within both pharmacophores. SEM and SEO have allowed for over 100 to 500-fold improvement in selectivity for S1P receptor subtype 1 over subtype 3. Utility of SEM and SEO and further SAR study allowed for discovery of a potent and selective preclinical candidate PPI-4955 (21b) with an excellent in vivo potency and dose responsiveness and markedly improved overall in vivo pharmacodynamic properties upon oral administration.


Asunto(s)
Amino Alcoholes/farmacología , Receptores de Lisoesfingolípidos/agonistas , Administración Oral , Amino Alcoholes/administración & dosificación , Animales , Ratones , Relación Estructura-Actividad
15.
Bioorg Med Chem Lett ; 19(8): 2315-9, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19282175

RESUMEN

In pursuit of potent and selective sphingosine-1-phosphate receptor agonists, we have utilized previously reported phenylamide and phenylimidazole scaffolds to explore extensive side-chain modifications to generate new molecular entities. A number of designed molecules demonstrate good selectivity and excellent in vitro and in vivo potency in both mouse and rat models. Oral administration of the lead molecule 11c (PPI-4667) demonstrated potent and dose-responsive lymphopenia.


Asunto(s)
Amidas/síntesis química , Imidazoles/síntesis química , Receptores de Lisoesfingolípidos/agonistas , Amidas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Clorhidrato de Fingolimod , Imidazoles/farmacología , Ratones , Glicoles de Propileno/química , Glicoles de Propileno/farmacología , Subunidades de Proteína/agonistas , Subunidades de Proteína/fisiología , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacología
16.
Bioorg Med Chem Lett ; 19(2): 369-72, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19081720

RESUMEN

In the design of potent and selective sphingosine-1-phosphate receptor agonists, we were able to identify two series of molecules based on phenylamide and phenylimidazole analogs of FTY-720. Several designed molecules in these scaffolds have demonstrated selectivity for S1P receptor subtype 1 versus 3 and excellent in vivo activity in mouse. Two molecules PPI-4621 (4b) and PPI-4691 (10a), demonstrated dose responsive lymphopenia, when administered orally.


Asunto(s)
Amidas/síntesis química , Amidas/farmacología , Imidazoles/síntesis química , Imidazoles/farmacología , Receptores de Lisoesfingolípidos/agonistas , Amidas/química , Animales , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/química , Ratones , Relación Estructura-Actividad
17.
Arthritis Rheum ; 56(3): 850-60, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17328059

RESUMEN

OBJECTIVE: To determine the disease-modifying activity and mechanism of action of the orally available methionine aminopeptidase type 2 inhibitor, [(1R)-1-carbamoyl-2-methyl-propyl]-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro [2.5] oct-6-yl ester (PPI-2458), in a rat model of peptidoglycan-polysaccharide (PG-PS)-induced arthritis. METHODS: Arthritis was induced in rats by administration of PG-PS, causing tarsal joint swelling and histopathologic changes characteristic of rheumatoid arthritis (RA). PPI-2458, a potent irreversible methionine aminopeptidase type 2 inhibitor, was administered orally every other day at 1, 5, or 10 mg/kg. RESULTS: In an in vitro osteoclastogenesis model, PPI-2458 potently inhibited osteoclast differentiation and bone resorption. In the rat PG-PS arthritis model, PPI-2458 afforded significant protection against established disease after therapeutic dosing. This in vivo activity of PPI-2458 was linked to the inhibition of methionine aminopeptidase type 2. Histopathologic assessment of affected joints showed improvement in processes of inflammation, bone resorption, and cartilage erosion, associated with significant improvement in all clinical indices. The protective effects of PPI-2458 against bone destruction in vivo, including the structural preservation of affected hind joints, correlated with improvements in bone histomorphometric markers, as determined by microfocal computed tomography and a significant decrease in systemic C-telopeptide of type I collagen, suggesting decreased osteoclast activity in vivo. Moreover, PPI-2458 prevented cartilage erosion as shown by a significant decrease in systemic cartilage oligomeric matrix protein. CONCLUSION: The findings of this study suggest that PPI-2458 exerts disease-modifying activity in experimental arthritis through its direct inhibition of several pathophysiologic processes of this disease. These results provide a rationale for assessing the potential of PPI-2458 as a novel RA therapy.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Inhibidores Enzimáticos/uso terapéutico , Compuestos Epoxi/uso terapéutico , Valina/análogos & derivados , Aminopeptidasas/antagonistas & inhibidores , Animales , Artritis Reumatoide/inducido químicamente , Resorción Ósea/patología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Femenino , Glicoproteínas/antagonistas & inhibidores , Humanos , Articulaciones/patología , Articulaciones/fisiopatología , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Peptidoglicano , Polisacáridos , Ratas , Ratas Endogámicas Lew , Índice de Severidad de la Enfermedad , Valina/farmacología , Valina/uso terapéutico
18.
Int J Oncol ; 28(4): 955-63, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16525646

RESUMEN

Over the past few decades, melanoma has shown the fastest growing incidence rate of all cancers. This malignancy is clinically defined by its potential to rapidly metastasize, and advanced metastatic melanomas are highly resistant to existing therapeutic regimens. Here, we report that PPI-2458, a novel, orally active agent of the fumagillin class of irreversible methionine aminopeptidase-2 (MetAP-2) inhibitors, potently inhibited the proliferation of B16F10 melanoma cells in vitro, with a growth inhibitory concentration 50% (GI50) of 0.2 nM. B16F10 growth inhibition was correlated with the inhibition of MetAP-2 enzyme, in a dose-dependent fashion, as determined by a pharmacodynamic assay, which measures the amount of uninhibited MetAP-2 following PPI-2458 treatment. Prolonged exposure of B16F10 cells to PPI-2458 at concentrations of up to 1 microM, 5,000-fold above the GI50, did not alter their sensitivity to PPI-2458 growth inhibition and no drug resistance was observed. Moreover, prolonged exposure to this agent induced melanogenesis, concomitant with the elevated expression of the melanocyte-specific enzymes tyrosinase and tyrosinase-related proteins (TRP) 1 and 2, a morphological feature associated with differentiated melanocytes. PPI-2458, when administered orally (p.o.), significantly inhibited B16F10 tumor growth in mice in a dose-dependent fashion, with a maximum inhibition of 62% at 100 mg/kg. This growth inhibition was directly correlated to the amount of irreversibly inhibited MetAP-2 (80% at 100 mg/kg PPI-2458) in tumor tissue. These data demonstrate that PPI-2458 has potent antiproliferative activity against B16F10 cells in vitro and in vivo, and that both activities are directly correlated with levels of MetAP-2 enzyme inhibition. This antiproliferative activity, coupled with additional observations from studies in vitro (absence of detectable resistance to PPI-2458 and induction of morphological features consistent with differentiated melanocytes), provides a rationale for assessing the therapeutic potential of PPI-2458 in the treatment of melanoma.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Compuestos Epoxi/farmacología , Melanoma Experimental/prevención & control , Valina/análogos & derivados , Administración Oral , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/metabolismo , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Compuestos Epoxi/administración & dosificación , Compuestos Epoxi/uso terapéutico , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Humanos , Masculino , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Metionil Aminopeptidasas , Ratones , Ratones Endogámicos C57BL , Valina/administración & dosificación , Valina/farmacología , Valina/uso terapéutico
19.
J Cell Biochem ; 95(6): 1191-203, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15962312

RESUMEN

The dependence of cell growth on methionine aminopeptidase (MetAP) function in bacteria and yeast is firmly established. Here we report experimental evidence that the control of cell proliferation in mammalian cells is directly linked and strictly dependent on the activity of both MetAP-1 and MetAP-2. The targeted downregulation of either methionine aminopeptidase MetAP-1 or MetAP-2 protein expression by small interfering RNA (siRNA) significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) (70%-80%), while A549 human lung carcinoma cell proliferation was less inhibited (20%-30%). The cellular levels of MetAP-2 enzyme were measured after MetAP-2 siRNA treatment and found to decrease over time from 4 to 96 h, while rapid and complete depletion of MetAP-2 enzyme activity was observed after 4 h treatment with two pharmacological inhibitors of MetAP-2, PPI-2458 and fumagillin. When HUVEC and A549 cells were treated simultaneously with MetAP-2 siRNA and PPI-2458, or fumagillin, which irreversibly inhibit MetAP-2 enzyme activity, no additive effect on maximum growth inhibition was observed. This strongly suggests that MetAP-2 is the single critical cellular enzyme affected by either MetAP-2 targeting approach. Most strikingly, despite their significantly different sensitivity to growth inhibition after targeting of either MetAP-1 or MetAP-2, HUVEC, and A549 cells, which were made functionally deficient in both MetAP-1 and MetAP-2 were completely or almost completely inhibited in their growth, respectively. This closely resembled the observed growth inhibition in genetically double-deficient map1map2 yeast strains. These results suggest that MetAP-1 and MetAP-2 have essential functions in the control of mammalian cell proliferation and that MetAP-dependent growth control is evolutionarily highly conserved.


Asunto(s)
Aminopeptidasas/clasificación , Aminopeptidasas/metabolismo , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ciclohexanos , Regulación hacia Abajo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Compuestos Epoxi/farmacología , Ácidos Grasos Insaturados/farmacología , Humanos , Metionil Aminopeptidasas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Sesquiterpenos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Venas Umbilicales/citología , Valina/análogos & derivados , Valina/farmacología
20.
Proc Natl Acad Sci U S A ; 101(29): 10768-73, 2004 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-15249666

RESUMEN

The hallmark of rheumatoid arthritis (RA) is the progressive destruction of articular joints, characterized by invasive synovial hyperplasia and pathological neovascularization. Here we report that PPI-2458, a member of the fumagillin class of irreversible methionine aminopeptidase-2 (MetAP-2) inhibitors, potently inhibits the proliferation of human fibroblast-like synoviocytes (HFLS-RA), derived from RA patients, with a growth inhibitory concentration 50 (GI(50)) of 0.04 nM and a maximum inhibition of >95% at 1 nM. Human umbilical vein endothelial cells (HUVEC) are similarly inhibited in proliferation by PPI-2458 (GI(50), 0.2 nM). We developed a method to measure the level of MetAP-2 enzyme inhibition after exposure to PPI-2458 and demonstrate that growth inhibition of PPI-2458-sensitive HFLS-RA and HUVEC is linked to MetAP-2 enzyme inhibition, in a dose-dependent fashion. The secretion of several inflammatory mediators such as IL-6 and vascular endothelial growth factor from activated HFLS-RA was not inhibited by PPI-2458. The CNS toxicity profile of PPI-2458, determined by the incidence of seizures, is significantly improved over that of the parental compound TNP-470. In the rat model of peptidoglycan-polysaccharide-induced arthritis, PPI-2458 significantly attenuated paw swelling when therapeutically administered after the onset of chronic disease. We suggest that the mechanism of PPI-2458 action, highly selective and potent anti-proliferative activity on HFLS-RA and HUVEC in vitro, a significantly improved CNS toxicity profile, and marked attenuation of chronic disease in the rat peptidoglycan-polysaccharide arthritis model in vivo, positions this compound as a drug for the treatment of RA.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/enzimología , Inhibidores Enzimáticos/uso terapéutico , Compuestos Epoxi/uso terapéutico , Metaloendopeptidasas/antagonistas & inhibidores , Membrana Sinovial/citología , Valina/uso terapéutico , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antirreumáticos/química , Antirreumáticos/farmacología , División Celular/fisiología , Células Cultivadas , Ciclohexanos , Regulación hacia Abajo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Ácidos Grasos Insaturados/química , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Sesquiterpenos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , Valina/análogos & derivados , Valina/química , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA